Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Environmental Microbiology

Microbiol. Biotechnol. Lett. 2020; 48(2): 205-214

https://doi.org/10.4014/mbl.1912.12013

Received: December 17, 2019; Accepted: January 21, 2020

알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules

Mirye Park , Z-Hun Kim , Seung Won Nam , Sang Deuk Lee , Suk Min Yun , Daeryul Kwon and Chang Soo Lee 1*

Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources

Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Keywords: Cyanobacteria, cryopreservation, microcapsule, Trichormus variabilis, mreB

  1. Brock TD. 1973. Evolutionary and ecological aspects of the cyanophytes. Botanical Monographs. 9: 487-500.
  2. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66: 1-20.
    Pubmed KoreaMed CrossRef
  3. Fay P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Mol. Biol. Rev. 56: 340-373.
    Pubmed KoreaMed CrossRef
  4. Milledge JJ. 2010. Commercial application of microalgae other than as biofuels: a brief review. Rev. Environ. Sci. Biotechnol. 10:31-41.
    CrossRef
  5. Mourelle M, Gómez C, Legido J. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4: 46.
    CrossRef
  6. Vijayakumar S, Menakha M. 2015. Pharmaceutical applications of cyanobacteria-A review. J. Acute Med. 5: 15-23.
    CrossRef
  7. Wang B, Zhang E, Gu Y, Ning S, Wang Q, Zhou J. 2011. Cryopreservation of brown algae gametophytes of undaria pinnatifida by encapsulation-vitrification. Aquaculture 317: 89-93.
    CrossRef
  8. Hallegraeff GM. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99.
    CrossRef
  9. Wood SA, Rhodes LL, Adams SL, Adamson JE, Smith KF, Smith JF, et al. 2008. Maintenance of cyanotoxin production by cryopreserved cyanobacteria in the New Zealand culture collection. New Zeal J. Mar. Fresh 42: 277-283.
    CrossRef
  10. Bartram J, Chorus I. 1999. Toxic cyanobacteria in water - A guide to their public health consequences, monitoring and management. In: Redman M, Crompton TR, Welch EB, Bau J, Henriques JD, Oliviera Raposo de J, Lobo Ferreira JP, Best G, Niemirycz E, Bogacka T, Lester JN, Birkett JW, Gleeson C, Gray N, Pereira LS, Gowing J, Bardolet R, Kay B, Smith LED, Franks T, Howsam P, Carter RC, Helmer R, Hespanhol I, Kimstach V, Meybeck M, Baroudy E, Chapman D, Bartram J, Balance R, Kay B, Howsan PE & FN Spon, pp. 416. London.
    CrossRef
  11. Rastoll MJ, Ouahid Y, Martín-Gordillo F, Ramos V, Vasconcelos V, Campo FFd. 2013. The development of a cryopreservation method suitable for a large cyanobacteria collection. J. Appl. Phycol. 25: 1483-1493.
    CrossRef
  12. Day JG, Benson EE, Harding K, Knowles B, Idowu M, Bremner D, et al. 2005. Cryopreservation and conservation of microalgae:the development of a Pan-European scientific and biotechnological resource (the COBRA project). Cryo Letters 26: 231-238.
  13. Day JG. 2007. Cryopreservation of microalgae and cyanobacteria. pp. 141-151. Cryopreservation and Freeze-Drying Proto cols. Humana Press, Totowa, NJ.
    Pubmed CrossRef
  14. Cavalcante SC, Freitas RS, Vidal MSM, Dantas KC, Levi JE, Martins JEC. 2007. Evaluation of phenotypic and genotypic alterations induced by long periods of subculturing of cryptococcus neoformans strains. Mem. Inst. Oswaldo Cruz 102: 41-47.
    Pubmed CrossRef
  15. Romo S, Bécares E. 1992. Preservation of filamentous cyanobacteria cultures under low temperatures. J. Microbiol. Methods. 16: 85-89.
    CrossRef
  16. Benson EE. 2008. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. CRC Crit. Rev. Plant Sci. 27: 141219.
    CrossRef
  17. Harding K, Day JG, Lorenz M, Timmermann H, Friedl T, Bremner DH, et al. 2004. Introducing the concept and application of vitrification for the cryo-conservation of algae-a mini-review. Nova Hedwigia. 79: 207-226.
    CrossRef
  18. Day JG. 2004. Cryopreservation: fundamentals, mechanisms of damage on freezing/thawing and application in culture collections. Nova Hedwigia. 79: 191-205.
    CrossRef
  19. Brand JJ, Diller KR. 2004. Application and theory of algal cryopreservation. Nova Hedwigia. 79: 175-189.
    CrossRef
  20. Day JG, Fleck RA. 2015. Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnol. 1: 1-11.
    CrossRef
  21. Gwo JC, Chiu JY, Chou CC, Cheng HY. 2005. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50: 338-343.
    Pubmed CrossRef
  22. Mori F, Erata M, Watanabe MM. 2002. Cryopreservation of cyanobacteria and green algae [Chlorophyceae] in the NIES-collection [Japan]. Microbiology and Culture Collections (Japan). 18: 45-55.
  23. Holm-Hansen O. 1963. Viability of blue-green and green algae after freezing. Physio plant. 16: 530-540.
    CrossRef
  24. Morris GJ. 1976. The cryopreservation of Chlorella 1. interactions of rate of cooling, protective additive and warming rate. Arch Microbiol. 107: 57-62.
    Pubmed CrossRef
  25. Paulet F, Engelmann F, Glaszmann J-C. 1993. Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep. 12:525-529.
    Pubmed CrossRef
  26. Sakai A, Engelmann F. 2007. Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryoletters 28: 151172.
  27. Kumari N, Gupta MK, Singh RK. 2016. Open encapsulationvitrification for cryopreservation of algae. Cryobiology 73: 232239.
    Pubmed CrossRef
  28. Park H-K. 2006. Long-term Preservation of bloom-forming cyanobacteria by cryopreservation. Algae 21: 125-131.
    CrossRef
  29. Day JG, DeVille MM. 1995. Cryopreservation of algae. in: Day J.G., Pennington M.W. (eds) Cryopreservation and Freeze-Drying Protocols., pp. 141-151, Methods in Molecular Biology™, Ed. Humana Press, Totowa, NJ.
  30. Nam SW, Shin W. 2016. Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications. Algae 31: 117-128.
    CrossRef
  31. Popova A, Kemp R. 2007. Effects of surfactants on the ultrastructural organization of the phytoplankton, Chlamydomonas reinhardtii and Anabaena cylindrica. Fund Appl. Limnol. 169:131-136.
    CrossRef
  32. Al-Tebrineh J, Mihali TK, Pomati F, Neilan BA. 2010. Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Appl. Environ. Microbiol. 76: 7836-7842.
    Pubmed KoreaMed CrossRef
  33. Hu B, Yang G, Zhao W, Zhang Y, Zhao J. 2007. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63: 1640-1652.
    Pubmed CrossRef
  34. Purohit GK, Mahanty A, Mohanty BP, Mohanty S. 2016. Evaluation of housekeeping genes as references for quantitative realtime PCR analysis of gene expression in the murrel channa striatus under high-temperature stress. Fish Physiol. Biochem. 42:125-135.
    Pubmed CrossRef
  35. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22-ΔΔCT Method. Methods. 25: 402-408.
    Pubmed CrossRef
  36. Garrido-Cardenas JA, Han X, Alonso DL, Garcia-Maroto F. 2019. Evaluation and optimization of a methodology for the longterm cryogenic storage of Tetradesmus obliquus at - 80ºC. Appl. Microbiol. Biotechnol. 103: 2381-2390.
    Pubmed CrossRef
  37. Lukešová A, Hrouzek P, Harding K, Benson EE, Day JG. 2008. Deployment of the encapsulation/dehydration protocol to cryopreserve diverse microalgae held at the Institute of Soil Biology, Academy of Sciences of the Czech Republic. Cryoletters 29: 21-26.
  38. Sakr S, Jeanjean R, Zhang CC, Arcondeguy T. 2006. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 188: 1396-1404.
    Pubmed KoreaMed CrossRef
  39. Braune W. 1980. Structural aspects of aknete germination in the cyanobacterium Anabaena variabilis. Arch Microbiol. 126:257-261.
    CrossRef
  40. Black K, Buikema WJ, Haselkorn R. 1995. The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 177: 6440-6448.
    Pubmed KoreaMed CrossRef
  41. Hagen C, Siegmund S, Braune W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37: 217-226.
    CrossRef
  42. Chekanov K, Vasilieva S, Solovchenko A, Lobakova E. 2018. Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures. Photosynthetica 56: 1268-1277.
    CrossRef
  43. Singh SM, Elster J. 2007. Cyanobacteria in antarctic lake environments. Algae and cyanobacteria in extreme environments. pp. 303-320. Ed. Springer, Dordrecht.
    CrossRef
  44. Potts M. 1994. Desccation tolerance of prokaryotes. Microbiol. Mol. Biol. Rev. 58: 755-805.
    Pubmed KoreaMed CrossRef
  45. Bewley JD. 1979. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol. 30: 195-238.
    CrossRef
  46. Singh SP, Montgomery BL. 2011. Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 19: 278-285.
    Pubmed CrossRef
  47. Gaballah A, Kloeckner A, Otten C, Sahl HG, Henrichfreise B. 2011. Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS One 6: e25129.
    Pubmed KoreaMed CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.