Article Search
닫기

Microbiology and Biotechnology Letters

단보(Note)

View PDF

Biocatalysis and Bioprocess Engineering  |  Bioenergy and Biorefinery

Microbiol. Biotechnol. Lett. 2020; 48(2): 179-184

https://doi.org/10.4014/mbl.2003.03003

Received: March 9, 2020; Accepted: May 25, 2020

시네라리아 꽃으로부터 에탄올 생산성 및 내열성이 우수한 효모 Hanseniaspora opuntiae 균주 분리

Isolation of Ethanol-producing Thermotolerant Yeast Hanseniaspora opuntiae from Senecio cruentus

Jeong-Ah Yoon 1, Young-Eun Do 1, Eun-Hee Park 1, Young-Woo Bae 1 and Myoung-Dong Kim 1, 2*

1Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea, 2Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Korea

The MBY/L6793 strain showing the highest ethanol yield of 0.48 ± 0.00 g ethanol/ g glucose was isolated from Senecio cruentus. Its ethanol yield was approximately 1.5 times that of the MBY/L6986 isolated from Callistephus chinensis. The strain was identified as Hanseniaspora opuntiae by sequence analysis of the 18S rRNA gene, and the sequenced gene was registered to the GenBank (MN859968). When grown at 40℃, the strain produced 3.82 ± 0.98 g ethanol from 20 g glucose and 10.05 ± 0.06 g ethanol from 60 g glucose, corresponding to approximately 2.45 and 5.74 times, respectively, compared to the control strain H. opuntiae KCCM50747. The MBY/L6793 strain was deposited to KCTC (Korean Collection for Type Culture) as KCTC37025.

Keywords: Ethanol, yeast, thermotolerance, flower, Hanseniaspora opuntiae

  1. Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS. 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 98: 2824-2828.
    Pubmed CrossRef
  2. Kádár Z, Szengyel Z, Réczey K. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crops Prod. 20: 103-110.
    CrossRef
  3. Xu Z, Huang F. 2014. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174: 43-62.
    Pubmed CrossRef
  4. Sun S, Sun S, Cao X, Sun R. 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199: 49-58.
    Pubmed CrossRef
  5. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. 2015. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. 33: 1091-1107.
    Pubmed CrossRef
  6. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. 2008. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 100: 1122-1131.
    Pubmed CrossRef
  7. Pattanakittivorakul S, Lertwattanasakul N, Yamada M, Limtong S. 2019. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek. 112: 975-990.
    Pubmed CrossRef
  8. Auesukaree C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124: 133-142.
    Pubmed CrossRef
  9. Choudhary J, Singh S, Nain L. 2017. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J. Biosci. Bioeng. 123: 342-346.
    Pubmed CrossRef
  10. Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P. 2018. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz. J. Microbiol. 49: 378-391.
    Pubmed KoreaMed CrossRef
  11. Yuan SF, Guo GL, Hwang WS. 2017. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain. Microb. Biotechnol. 10: 1581-1590.
    Pubmed KoreaMed CrossRef
  12. Isono N, Hayakawa H, Usami A, Mishima T, Hisamatsu M. 2012. A comparative study of ethanol production by Issatchenkia orientalis strains under stress conditions. J. Biosci. Bioeng. 113: 76-78.
    Pubmed CrossRef
  13. Kwon HJ, Kim MD. 2016. Isolation of stress-tolerant Pichia farinosa from nuruk. Microbiol. Biotechnol. Lett. 44: 349-354.
    CrossRef
  14. Kang HW, Kim Y, Park JY, Min J, Choi GW. 2010. Development of thermostable fusant, CHY1612 for lignocellulosic simultaneous saccharification and fermentation. KSBB J. 25: 565-571.
  15. Hyun SH, Lee HB, Kim CM, Lee JS. 2013. New records of yeasts from wild flowers in coast near areas and inland areas, Korea. Korean J. Mycol. 41: 74-80.
    CrossRef
  16. Ma Y, Liu Z, Yang Z, Li M, Liu J, Song J. 2013. Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunol. 4: 66-73.
    Pubmed CrossRef
  17. Baek SY, Lee YJ, Kim JH, Yeo SH. 2015. Isolation and characterization of wild yeasts for improving liquor flavor and quality. Microbiol. Biotechnol. Lett. 43: 56-64.
    CrossRef
  18. Guillamón JM, Sabaté J, Barrio E, Cano J, Querol A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387-392.
    Pubmed CrossRef
  19. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
    Pubmed CrossRef
  20. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  21. Duncan DB. 1955. Multiple range and multiple F test. Biometrics. 11: 1-42.
    CrossRef
  22. Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. 2013. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci. Biotechnol. Biochem. 77: 1505-1510.
    Pubmed CrossRef
  23. Hyun SH, Lee JG, Park WJ, Kim HK, Lee JS. 2014. Isolation and diversity of yeasts from fruits and flowers of orchard in Sinammyeon of Yesan-gun, Chungcheongnam-do, Korea. Korean J. Mycol. 42: 21-27.
    CrossRef
  24. Luan Y, Zhang BQ, Duan CQ, Yan GL. 2018. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii. LWT-Food Sci. Technol. 92:177-186.
    CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.