Article Search
닫기

Microbiology and Biotechnology Letters

단보(Note)

View PDF

Bioactive Compounds / Food Microbiology  |  Food Biotechnology

Microbiol. Biotechnol. Lett. 2019; 47(4): 530-535

https://doi.org/10.4014/mbl.1902.02006

Received: February 8, 2019; Accepted: April 14, 2019

누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리

Isolation of Xylitol-Producing Thermotolerant Yeast Millerozyma farinosa from Nuruk

Eun-Hye Jung , Young-Woo Bae , Se-Young Kwun , Eun-Hee Park and Myoung-Dong Kim *

Division of Food Biotechnology and Biosystems Engineering, Kangwon National University

Diverse types of nuruks (traditional Korean fermentation initiators) were examined in order to isolate thermotolerant yeast strains capable of utilizing xylose as a carbon source. Among twenty yeast strains that grew at 46℃, MBY/L1597 showed a notably higher specific growth rate than other strains. This strain was identified as Millerozyma farinosa. While the control strain M. farinosa KCTC27412 (= CBS7064) did not show xylose reductase (XR) activity and apparent growth at 46℃, M. farinosa MBY/L1597 exhibited XR activity of 4.98 ± 0.49 U/mg protein when NADPH was used as a cofactor. M. farinosa MBY/L1597 cultured at 46℃ produced (9.87 ± 1.00 g/l) xylitol from 20 g/l xylose, corresponding to approximately 50% yield. M. farinosa MBY/L1597 was deposited at the Korean Collection for Type Cultures as KCTC27797.

Keywords: Tolerance, xylose reductase, xylitol, yeast, Millerozyma farinosa, Nuruk

  1. Kim MJ. 2002. The study about traditional Nuruk. J. Natur. Sci. 9: 291-310.
  2. Park HS, Jeong DY, Cho SH. 2014. Study on manufacturing method of Sunchang's Nuruk and Yakju and screening of Nuruk microorganism. J. Agric. Life Sci. 45: 6-11.
  3. Choi YH, Choi DH, Park EH, Kim MD. 2016. Isolation of potent amylolytic fungus Rhizopus oryzae from Nuruk. Microbiol. Biotechnol. Lett. 44: 376-382.
    CrossRef
  4. Park CD, Jung HK, Park HH, Hong JH. 2007. Identification and fermentation characteristics of lactic acid bacteria isolated from Hahyangju Nuruk. Korean J. Food Preserv. 14: 188-193.
  5. Jo KY, Ha DM. 1995. Isolation and identification of the lactic acid bacteria from Nuruk. Agricul. Chem. Biotechnol. 38: 95-99.
  6. Choi DH, Choi YH, Yeo SH, Kim MD. 2016. Isolation and characterization of Saccharomyces cerevisiae from Nuruk for production of ethanol from maltose. Microbiol. Biotechnol. Lett. 44: 34-39.
    CrossRef
  7. Jung HK, Park CD, Park HH, Lee GD, Lee IS, Hong JH. 2006. Manufacturing and characteristics of Korean traditional liquor, Hahyangju prepared by Saccharomyces cerevisiae HA3 isolated from traditional Nuruk. Korean J. Food Sci. Technol. 38: 659-667.
  8. Choi DH, Park EH, Kim MD. 2014. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Korean J. Microbiol. Biotechnol. 42: 407-412.
    CrossRef
  9. Baek SY, Yun HJ, Choi HS, Hong SB, Yeo SH. 2010. Screening and characteristics of useful fungi for brewing from commercial Nuruk in Chungcheong provinces. Korean J. Microbiol. Biotechnol. 38: 373-378.
  10. Baek SY, Lee YJ, Kim JH, Yeo SH. 2015. Isolation and characterization of wild yeasts for improving liquor flavor and quality. Microbiol. Biotechnol. Lett. 43: 56-64.
    CrossRef
  11. Park JH, Chung CH. 2014. Characteristics of Takju prepared with Nuruk, and identification of lactic acid bacteria in Nuruk. Korean J. Food Sci. Technol. 46: 153-164.
    CrossRef
  12. Kim JS, Park JB, Jang SW, Kwon DH, Hong EK, Shin WC, Ha SJ. 2017. Xylitol production by Kluyveromyces marxianus 36907FMEL1 at high temperature was considerably increased through the optimization of agitation conditions. Microbiol. Biotechnol. Lett. 45: 57-62.
    CrossRef
  13. Seo JH. 1999. Production of xylitol from Candida tropicalis. Ann. Rep. Res. Agric. Life Sci. 3: 272-274.
  14. Mahmud A, Hattori K, Hongwen C, Kitamoto N, Suzuki T, Nakamura K, et al. 2013. Xylitol production by NAD+-dependent xylitol dehydrogenase (xdhA) and L-arabitol-4-dehydrogenase (ladA)-disrupted mutants of Aspergillus oryzae. J. Biosci. Bioeng. 115: 353-359.
    Pubmed CrossRef
  15. Ko JJ, Yun SL, Kang SW, Kim SK. 2008. A review on thermochemical pretreatment in lignocellulosic bioethanol production. Korea Organic. Res. Recyc. Assoc. 16: 79-88.
  16. Kim HG, Song HJ, Park DJ, Yang WH, Kim YD, Yang JK, et al. 2015. Bioethanol production by optimal enzymatic hydrolysis of pretreated Miscanthus sinensis var. purpurascens. J. Agric. Sci. 49: 135-145.
    CrossRef
  17. Kang HW, Kim Y, Park JY, Min J, Choi GW. 2010. Development of thermostable fusant, CHY1612 for lignocellulosic simultaneous saccharification and fermentation. KSBB 25: 565-571.
  18. Choi JM, Choi SS, Yeom SH. 2012. Bioethanol production from wasted corn stalk from Gangwon province: from enzymatic hydrolysis to fermentation. Appl. Chem. Eng. 23: 326-332.
  19. Kwon HJ, Kim MD. 2016. Isolation of stress-tolerant Pichia farinosa from Nuruk. Microbiol. Biotechnol. Lett. 44: 349-354.
    CrossRef
  20. Guillamon JM, Sabate J, Barrio E, Cano J, Querol A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387-392.
    Pubmed CrossRef
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
    CrossRef
  22. Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund M. 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 5: 1-10.
    Pubmed KoreaMed CrossRef
  23. Wu G, Nie L, Freeland SJ. 2007. The effects of differential gene expression on coding sequence features: analysis by one-way ANOVA. Biochem. Biophys. Res. Commun. 358: 1108-1113.
    Pubmed CrossRef
  24. Ryu BH, Nam KD, Kim HS, Kim DS, Ji YA, Jung SJ. 1988. Screening of thermotolerant yeast strain for ethanol fermentation. Korean J. Appl. Microbiol. Bioeng. 16: 265-269.
  25. Choudhary J, Singh S, Nain L. 2016. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron. J. Biotechnol. 21: 82-92.
    CrossRef
  26. Verduyn C, Van KR, Van DJ, Scheffers W. 1985. Properties of the NAD(P)H- dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 226: 669-677.
    Pubmed KoreaMed CrossRef
  27. Yokoyama S, Suzuki T, Kawai K, Horitsu H, Takamizawa K. 1995. Purification, characterization and structure analysis of NADPHdependent D-xylose reductases from Candida tropicalis. J. Ferment. Bioeng. 79: 217-223.
    CrossRef
  28. Lee JK, Koo BS, Kim SY. 2003. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69: 6179-6188.
    Pubmed KoreaMed CrossRef
  29. Kim JS, Park JB, Jang SW, Ha SJ. 2015. Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl. Biochem. Biotechnol. 176: 1975-1984.
    Pubmed CrossRef
  30. Yoo BH, Park EH, Kim MD. 2016. Enhanced resistance to lactic acid by laboratory adaptive evolution of Saccharomycopsis fibuligera. Microbiol. Biotechnol. Lett. 44: 488-492.
    CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.