Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Molecular and Cellular Microbiology / Biomedical Sciences  |  Clinical Microbiology and Biomedical Sciences

Microbiol. Biotechnol. Lett. 2019; 47(3): 449-458

https://doi.org/10.4014/mbl.1806.06004

Received: June 22, 2018; Accepted: February 12, 2019

The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

Apon Zaenal Mustopa *, Sri Kartika Wijaya , Ratih Asmana Ningrum , Dian Fitria Agustiyanti , Lita Triratna and Wida Nurul Alfisyahrin

Research Centre for Biotechnology, Indonesian Institute of Science (LIPI), Indonesia

Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10–20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.

Keywords: Lactococcus lactis, protein purification, HBcAg gene, western blotting, codon optimization, dot blot hybridization

  1. World Health Organization. Factsheet No. 204; October 2000. Accessed on May 2018.
    Available from: http://www.who.int/mediacentre/factsheets/fs204/en.
  2. Thedja MD, Muljono DH, Nurainy N, Sukowati CHC, Verhoef J, Marzuki S. 2011. Ethnogeographical structure of hepatitis B virus genotype distribution in Indonesia and discovery of a new subgenotype, B9. Arch. Virol. 156: 855-868.
    Pubmed KoreaMed CrossRef
  3. Nurainy N, Muljono DH, Sudoyo H, Marzuki S. 2008. Genetic study of hepatitis B virus in Indonesia reveals a new subgenotype of genotype B in Nusa Tenggara. Arch. Virol. 153: 1057-1065.
    Pubmed CrossRef
  4. Utama A, Theresia IO, Rama D, Upik AM, Irwan Y, Susan T. 2009. Hepatitis B virus genotypes/subgenotypes in voluntary blood donors in Makassar, South Sulawesi, Indonesia. Virol. J. 6: 128.
    Pubmed CrossRef
  5. Utama A, Sigit P, Marlinang DS, Rama D, Rino AG, Irsan H, et al. 2009. Hepatitis B virus subgenotypes and basal core promoter mutations in Indonesia. World J. Gastroenterol. 15: 4028-4036.
    Pubmed CrossRef
  6. Don Ganem MD, Prince AM. 2004. Hepatitis B virus infection natural history and clinical consequences. N. Engl. J. Med. 350:1118-1129.
    Pubmed CrossRef
  7. Loggi E, Vitale G, Conti F, Bernardi M, Andreone P. 2015. Chronic hepatitis B: Are we close to a cure?. Dig. Liver Dis. 47: 836-841.
    Pubmed CrossRef
  8. Akbar SMF, Chen S, Al-Mahtab M, Abe M, Hiasa Y, Onji M. 2012. Strong and multi-antigen specific immunity by hepatitis B core antigen HBcAg-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus. Antiviral Res. 96: 59-64.
    Pubmed CrossRef
  9. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. 2000. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191: 1269-1280.
    Pubmed CrossRef
  10. Cui GY, Diao HY. 2010. Recognition of HBV antigens and HBV DNA by dendritic cells. Hepatobiliary Pancreat. Dis. Int. 9: 584-592.
  11. Choi Y, Park SG, Yoo J, Jung G. 2005. Calcium ions affect the hepatitis B virus core assembly. Virology 3321: 454-463.
    Pubmed CrossRef
  12. Pyrski M, Rugowska A, Wierzbiński KR, Kasprzyk A, Bogusiewicz M, Bociąg P, et al. 2017. HBcAg produced in transgenic tobacco triggers Th1 and Th2 response when intramuscularly delivered. Vaccine 3542: 5714-5721.
    Pubmed CrossRef
  13. Chen H, Liu SP, Chen L, Huang JH, Xiang SM. 2005. Expression of HBcAg mutant with long internal deletion in Saccharomyces cerevisiae and observation of its self-assembly particles by atomic force microscopy AFM. Int. J. Biol. Macromol. 375: 239-248.
    Pubmed CrossRef
  14. de Vos WM. 1999. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 23: 289-295.
    CrossRef
  15. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, et al. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 113: E6117-E6125.
    Pubmed CrossRef
  16. Quax TE, Claassens NJ, Soll D, van der Oost J. 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell. 592: 149-161.
    Pubmed KoreaMed CrossRef
  17. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. pp. 1116-1118. 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  18. Wright F, Bibb MJ. 1992. Codon usage in the G+C-rich Streptomyces genome. Gene 113: 55-65.
    CrossRef
  19. Ohkubo S, Muto A, Kawauchi Y, Yamao F, Osawa S. 1987. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol. Gen. Genet. 210: 314-322.
    Pubmed CrossRef
  20. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res.115: 731-753.
    Pubmed CrossRef
  21. Desvaux M, Hebraud M, Talon R, Henderson IR. 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17: 139-145.
    Pubmed CrossRef
  22. de Ruyter PG, Kuipers OP, de Vos WM. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 6210: 3662-3667.
  23. Mustopa AZ, Murtiyaningsih H, Fatimah, Suharsono. 2016. Cloning and heterologous expression of extracellular plantaricin F produced by Lactobacillus plantarum S34 isolated from “Bekasam” in Lactococcus lactis. Microbiol. Indones. 10: 95-106.
    CrossRef
  24. Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. 2018. Construction, heterologous expression, partial purification, and in vitro cytotoxixity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol. Biol. Rep. 45: 1235-1244.
    Pubmed CrossRef
  25. Blatny JM, Ertesvag H, Nes IF, Valla S. 2003. Heterologous gene expression in Lactococcus lactis; expression of the Azotobacter vinelandii algE6 gene product displaying mannuronan C-5 epimerase activity. FEMS Microbiol. Lett. 2272: 229-235.
    CrossRef
  26. Frelet-Barrand A, Boutigny S, Moyet L, Deniaud A, SeigneurinBerny D, Salvi D, et al. 2010. Lactococcus lactis, an alternative sys tem for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS One 51: e8746.
    Pubmed CrossRef
  27. Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, et al. 2002. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl. Environ. Microbiol. 68: 917-922.
    Pubmed KoreaMed CrossRef
  28. Brurberg MB, Haandrikman AJ, Leenhouts KJ, Venema G, Nes IF. 1994. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 421: 108-115.
    Pubmed CrossRef
  29. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, BermúdezHumarán LG, et al. 2005. Protein secretion in Lactococcus lactis:an efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 2.

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.