WHO. 2015. Food safety. Available from
http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 8 November, 2017.
CDC. 2015. Foodborne germs and illnesses. Available from
https://www.cdc.gov/foodsafety/foodborne-germs.html. Accessed 15, December, 2017.
Hussain MA, Gooneratne R. 2017. Understanding the fresh produce safety challenges. Foods 6: 23.
Wadamori Y, Gooneratne R, Hussain MA. 2017. Outbreaks and factors influencing microbiological contamination of fresh produce. J. Sci. Food Agr. 97: 1396-1403.
CDC. 2018. List of selected multistate foodborne outbreak investigations. Available from
https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html. Accessed 18 October, 2018.
CDC. 2018. Multistate outbreak of E. coli O157:H7 infections linked to romaine lettuce (Final update). Available from
https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html. Accessed 14 August, 2018 .
CDC. 2012. Multistate outbreak of Salmonella Typhimurium and Salmonella newport infections linked to Cantaloupe (Final update). Available from
https://www.cdc.gov/salmonella/typhimurium-cantaloupe-08-12/index.html. Accessed 17 October, 2018.
Tauxe RV. 2002. Emerging foodborne pathogens. Int. J. Food Microbiol. 78: 31-41.
Yeni F, Yavaş S, Alpas H, Soyer Y. 2016. Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit. Rev. Food Sci. Nutr. 56: 1532-1544.
Janisiewicz WJ, Korsten L. 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40: 411-441.
Jordan K, Dalmasso M, Zentek J, Mader A, Bruggeman G, Wallace J, et al. 2014. Microbes versus microbes: control of pathogens in the food chain. J. Sci. Food Agr. 94: 3079-3089.
González-Pérez CJ, Aispuro-Hernández E, Vargas-Arispuro I, Martínez-Téllez MA. 2018. Induction of bacteriocins from lactic acid bacteria; a strategy to improve the safety of fresh fruits and vegetables. ARTOAJ 14: 555927.
Karpiński TM, Szkaradkiewicz AK. 2013. Characteristic of bacteriocines and their application. Pol. J. Microbiol. 62: 223-235.
Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100: 2939-2951.
Barbosa AAT, Mantovani HC, Jain S. 2017. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit. Rev. Biotechnol. 37: 852-864.
Lubelski J, Rink R, Khusainov R, Moll G, Kuipers O. 2008. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell. Mol. Life Sci. 65: 455-476.
Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. 2016. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 120: 118-132.
Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, et al. 2013. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20: 42-49.
Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, Faseleh Jahromi M, et al. 2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed. Res. Int. 2014: 927268.
Todorov SD, Dicks LMT. 2009. Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int. J. Food Microbiol. 132: 117-126.
Yi L, Dang J, Zhang L, Wu Y, Liu B, Lü X. 2016. Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control. 67: 53-62.
Shan B, Cai Y-Z, Brooks JD, Corke H. 2011. Potential application of spice and herb extracts as natural preservatives in cheese. J. Med. Food. 14: 284-290.
Hernandez D, Cardell E, Zarate V. 2005. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin‐like substance pro duced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 99:77-84.
de Lima Marques J, Funck GD, da Silva Dannenberg G, dos Santos Cruxen CE, El Halal SLM, Dias ARG, et al. 2017. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 63: 159-163.
Hall BG, Acar H, Nandipati A, Barlow M. 2014. Growth rates made easy. Mol. Biol. Evol. 31: 232-238.
Doi K, Nishizaki Y, Fujino Y, Ohshima T, Ohmomo S, Ogata S. 2009. Pediococcus lolii sp. nov., isolated from ryegrass silage. Int. J. Syst. Evol. Microbiol. 59: 1007-1010.
Cruz‐Guerrero A, Hernández‐Sánchez H, Rodríguez‐Serrano G, Gómez‐Ruiz L, García‐Garibay M, Figueroa‐González I. 2014. Commercial probiotic bacteria and prebiotic carbohydrates: a fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. J. Sci. Food Agr. 94: 2246-2252.
Macwana SJ, Muriana PM. 2012. A ‘bacteriocin PCR array’ for identification of bacteriocin-related structural genes in lactic acid bacteria. J. Microbiol. Methods. 88: 197-204.
Savadogo A, Ouattara AC, Bassole HI, Traore SA. 2006. Bacteriocins and lactic acid bacteria-a minireview. Afr. J. Biotechnol. 5:678-683.
Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One. 8: e59310.
Corsetti A, Settanni L, López CC, Felis GE, Mastrangelo M, Suzzi G. 2007. A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst. Appl. Microbiol. 30: 561-571.
Beck R, Weiss N, Winter J. 1988. Lactobacillus graminis sp. nov., a new species of facultatively heterofermentative lactobacilli surviving at low pH in grass silage. Syst. Appl. Microbiol. 10: 279-283.
Albano H, Todorov SD, van Reenen CA, Hogg T, Dicks LM, Teixeira P. 2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int. J. Food Microbiol. 116:239-247.
Maldonado-Barragán A, Caballero-Guerrero B, Martín V, RuizBarba JL, Rodríguez JM. 2016. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol. 16: 37.
Hayek SA, Ibrahim SA. 2013. Current limitations and challenges with lactic acid bacteria: a review. Food Nutr. Sci. 4: 73-87.
Vijayakumar PP, Muriana PM. 2015. A microplate growth inhibition assay for screening bacteriocins against Listeria monocytogenes to differentiate their mode-of-action. Biomolecules 5: 1178-1194.
Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB. 2016. Novel group of leaderless multipeptide bacteriocins from grampositive bacteria. Appl. Environ. Microbiol. 82: 5216-5224.
Von Mollendorff J, Todorov S, Dicks L. 2006. Comparison of bacteriocins produced by lactic-acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan Peninsula. Curr. Microbiol. 53: 209-216.
Todorov SD, Perin LM, Carneiro BM, Rahal P, Holzapfel W, Nero LA. 2017. Safety of Lactobacillus plantarum ST8Sh and its bacteriocin. Probiotics Antimicrob. Proteins 9: 334-344.
Muhialdin BJ, Hassan Z, Sadon SK. 2011. Antifungal activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on selected foods. J. Food Sci. 76: M493-M499.
Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LMT. 2018. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 49: 23-28.