Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Environmental Microbiology

Microbiol. Biotechnol. Lett. 2018; 46(4): 403-415

https://doi.org/10.4014/mbl.1804.04019

Received: May 1, 2018; Accepted: July 9, 2018

Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir

Vijitra Luang-In 1*, Worachot Saengha 1, Manatchanok Yotchaisarn 1, Monika Halaslova 2, Piyachat Udomwong 3 and Sirirat Deeseenthum 1

1Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Mahasarakham 44150 Thailand, 2Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia, 2Chiang Mai University, Thailand, 2Chiang Mai University, Thailand

The aims of this novel work were to determine the microbial strains and exopolysaccharide (EPS) producers in water kefir from Nakhon Ratchasima Province, Thailand. Thirty-three microbial strains were identified using 16S rRNA gene analysis consisting of 18 bacterial strains, as 9 strains of acetic acid bacteria (AAB), 9 strains of lactic acid bacteria (LAB), and 15 yeast strains. All bacteria were able to produce EPS with a diverse appearance on agar media containing different sugars at a concentration of 8%. Culture supernatants from AAB and LAB showed 31−64% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with the highest antioxidant activity of 64% from Acetobacter pasteurianus WS3 and WS6. Crude EPS from A. pasteurianus WS3 displayed the highest ferric reducing antioxidant power at 280 mM FeSO4/g EPS, greatest anti-tyrosinase activity at 20.35%, and highest EPS production of 1,505 mg EPS/L from 8% sucrose. These microbes offer beneficial health implications and their EPSs can be used as food additives and cosmetic ingredients.

Keywords: Antioxidant, exopolysaccharide, kefir, lactic acid bacteria, tyrosinase

  1. Nielsen B, Gürakan GC, Ünlü G. 2014. Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob. Proteins. 6: 123-135.
    Pubmed CrossRef
  2. John SM, Deeseenthum S. 2015. Properties and benefits of kefir A review. Songklanakarin J. Sci. Technol. 37: 275-282.
  3. Diosma G, Romanin DE, Rey-Burusco MF, Alejandra L, Garrote LG. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 30: 43-53.
    Pubmed CrossRef
  4. Miguel MG, Cardoso PG, Magalhaes-Guedes KT, Schwan RF. 2013. Identification and assessment of kefir potential for sugar/ethanol-resistance. Braz. J. Microbiol. 44: 113-118.
    Pubmed KoreaMed CrossRef
  5. Silva KR, Rodrigues SA, Filho LX, Lima AS. 2009. Antimicrobial activity of broth fermented with kefir grains. Appl. Microbiol. Biotechnol. 152: 316-325.
  6. Waldherr FW, Doll VM, Meißner D, Vogel RF. 2010. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol. 27: 672-678.
    Pubmed CrossRef
  7. Mitsue T, Tachibana K, Fujio Y. 1999. Efficient kefiran production by a mixed culture of Lactobacillus kefiranofaciens KF-75 and yeast strains. J. Biosci. Bioeng 87: 400.
    CrossRef
  8. Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K. 2005. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 151: 4111-4120.
    Pubmed CrossRef
  9. Freitas F, Alves AV, Carvalheira M, Costa N, Oliveira R, Reis MA. 2009. Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohydr. Polym. 78: 549556.
    CrossRef
  10. Mahapatra S, Banerjee D. 2013. Fungal Exopolysaccharide: production, composition and applications. Microbiol. Insights. 6: 116.
    Pubmed KoreaMed CrossRef
  11. Parikh A, Madamwar D. 2006. Partial characterization of extracellular polysaccharides from Cyanobacteria. Bioresour. Technol. 97:1822-1827.
    Pubmed CrossRef
  12. Sutherland IW. 2001. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J. 11: 663-674.
    CrossRef
  13. Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G, Silva CJ, et al. 2013. Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr. Polym. 92: 1408-1415.
    Pubmed CrossRef
  14. Luang-In V, Deeseenthum S. 2016. Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWTFood Sci. Technol. 73: 592-601.
  15. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed CrossRef
  16. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
    Pubmed CrossRef
  17. Rambaut A. 2012. FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology. Biology. <http://tree.bio.ed.ac.uk/software/figtree/>.
  18. Paulo EM, Vasconcelos MP, Oliveira IS, Affe HMJ, Nascimento R, MELO, I. S. de et al. 2012. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Ciência e Tecnologia de Alimentos. 32: 710714.
    CrossRef
  19. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power : The FRAP Assay. Anal. Biochem. 239: 70-76.
    Pubmed CrossRef
  20. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, et al. 2006. Blackberry, black raspberry, blueberry, cranberry, red rasp and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 54:9329-9339.
    Pubmed CrossRef
  21. Choi HK, Lim YS, Kim YS, Park SY, Lee CH, et al. 2008. Free-radicalscavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem. 106: 564568.
    CrossRef
  22. Li L, Wieme A, Spitaels F, Balzarini T, Nunes O, Manaia CM, et al. 2014. Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of strains of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int. J. Syst. Evol. Microbiol. 64:2407-2415.
    Pubmed CrossRef
  23. Chen Z, Shi J, Yang X, Liu Y, Nan B, Zhongfu W. 2016. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int. J. Dairy Technol. 69: 410-417.
    CrossRef
  24. Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. 2009. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotech. 84: 341-347.
    Pubmed CrossRef
  25. Rao BP, Sudharsan K, Sekaran RCHG, Mandal AB. 2013. Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. Int. J. Sci. Eng. Res. 4: 16961704.
  26. Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M. 2013. Antifungal activity of Meyerozyma guilliermondii: identification of activity compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33: 243-251.
    Pubmed CrossRef
  27. Osimani A, Garofalo C, Aquilanti L, Milanovic V, Clementi F. 2015. Unpasteurised commercial boza as a source of microbial diversity. Int. J. Food Microbiol. 194: 62-70.
    Pubmed CrossRef
  28. Gulitz A, Stadie J, Wenning M, Ehrmann MA, vogel RF. 2011. The microbial diversity of water kefir. Int. J. Food Microbiol. 151: 284288.
    Pubmed CrossRef
  29. Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG. 1992. Structure of the exopolysaccharide produced by Lactococcus lactis sub cremoris H414 grown in a defined medium or skimmed-milk. Carbohydr. Res. 231: 273-291.
    CrossRef
  30. van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ. 2000. Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohydr. Res. 327: 411-422.
    CrossRef
  31. Ali IAI, Akakabe Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T. 2011. Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr. Polym. 86: 1000-1006.
    CrossRef
  32. Grobben GJ, Smith MR, Sikkema J, de Bont JAM. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 46: 279-284.
    CrossRef
  33. Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003-5008.
    Pubmed KoreaMed
  34. Zhang T, Zhang C, Li S, Zhang Y, Yang Z. 2011. Growth and exopolysaccharide production by Streptococcus thermophilus ST1 in skim milk. Braz. J. Microbiol. 42: 1470-1478.
    Pubmed KoreaMed CrossRef
  35. Yang JH, Mau JL, Ko PT, Huang LC. 2000. Antioxidant properties of fermented soybean broth. Food Chem. 71: 249-54.
    CrossRef
  36. Sakanaka S, Tachibana Y, Okada Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinohacha). Food Chem. 89: 569-675.
    CrossRef
  37. Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushit K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci. Biotechnol. Biochem. 66: 777-783.
    Pubmed CrossRef
  38. Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J. 2015. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171: 73-77.
    Pubmed CrossRef
  39. Cerning J, Renard CM, Thibault JF, Bouillanne C, Landon M, Desmazeaud M et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60:3914-3919.
    Pubmed KoreaMed
  40. Mozzi F, Savoy de Giori G, Oliver G, Font de Valdez G. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions. Milchwissenschaft. 51: 670-673.
  41. Bajpai VK, Rather IA, Park YH. 2016. Partially purified exo-polysaccharide from Lactobacillus sakei Probio 65 with antioxidant, αglucosidase and tyrosinase inhibitory potential. J. Food Biochem. 40: 264-274.
    CrossRef
  42. Baek HS, Rho HS, Yoo JW, Ahn SM, Lee JY, Kim JA. 2008. The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bull. Korean Chem. Soc. 29: 43-46.
    CrossRef
  43. Hima Bindu NSVSSSL, Singara Charya MA. 2017. Biological activities of exopolysaccharide from the mushroom. Fomitopsis feei. Int. J. Microbiol. Res. 8: 48-58.
  44. Song YR, Song NE, Kim JH, Nho YC, Baik SH. 2011. Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. J. Gen. Appl. Microbiol. 57: 169-175.
    Pubmed CrossRef
  45. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82: 12781283.
    CrossRef
  46. Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. 2013. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir-Part II. Food Hydrocoll. 30:343-350.
    CrossRef
  47. Luang-In V, Saengha W, Deeseenthum, S. 2018. Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk kefir. Microbiol. Biotechnol. Lett. 46: 9-17.
    CrossRef

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.