Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Environmental Microbiology

Microbiol. Biotechnol. Lett. 2017; 45(1): 71-80

https://doi.org/10.4014/mbl.1702.02006

Received: February 28, 2017; Accepted: March 23, 2017

한국과 중국 미생물 발효차의 미생물 군집분석 및 비교

A Comparison of the Microbial Diversity in Korean and Chinese Post-fermented Teas

Byung-Hyuk Kim 1, Jong-Ok Jang 1, Jae Ho Joa 1, Jin-Ah Kim 1, Seung-Yeob Song 1, Chan Kyu Lim 1, Chun-Hwan Kim 1, Young Bin Jung 1, Ki Cheol Seong 1, Hee-Sik Kim 2 and Doo-Gyung Moon 1*

1Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA, Jeju 63240, Republic of, 2Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea

Tea is the most popular beverage in the world. The three main types are green, black, and post-fermented. Post-fermented teas are produced by the microbial fermentation of sun-dried green tea leaves (Camellia sinensis). In this study, the composition of the bacterial communities involved in the production of traditional oriental post-fermented teas (Korean algacha, dancha, and Chinese pu-erh) were investigated using 16S rRNA gene analysis. The dominant microorganisms present in the post-fermented teas included the α-proteobacteria Rhodobacteraceae and Sphingomonas, and the γ-proteobacteria Pantoea. Cluster analysis confirmed that the microbial populations present in both Korean and Chinese post-fermented teas grouped into the same class. Interestingly, the dominant microorganism present in the Korean postfermented teas was a bacterium, while for the Chinese post-fermented tea, it was a fungus.

Keywords: Camellia sinensis, double gradient-DGGE, microbial community, post-fermented tea, tea

  1. Ho CT, Lin JK, Shahidi F. 2008. Tea and tea products: chemistry and health-promoting properties. CRC press, Boca Raton.
    CrossRef
  2. Zaveri NT. 2006. Green tea and its polyphenolic catechins:medicinal used in cancer and noncancer application. Life Sci. 78: 2073-2080.
    Pubmed CrossRef
  3. Basu A, Lucas EA. 2007. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 65: 361-375.
    Pubmed CrossRef
  4. Weinreb O, Amit T, Mandel S, Youdim MB. 2009. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Gene Nutr. 4: 283-296.
    Pubmed KoreaMed CrossRef
  5. Yang CS, Wang X, Lu G, Picinich SC. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9: 429-439.
    Pubmed KoreaMed CrossRef
  6. Shon MY, Kim SH, Nam SH, Park SK, Sung NJ. 2004. Antioxidant activity of Korean green and fermented tea extracts. J. Life Sci. 14: 920-924.
    CrossRef
  7. Lv H-P, Zhang YJ, Lin Z, Liang YR. 2013. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 53: 608618.
    CrossRef
  8. Heo BG, Park YS, Chon SU, Lee SY, Cho JY, Gorinstein S. 2007. Antioxidant activity and cytotoxicity of methnol extracts from aerial partsw of Korean salad plants. BioFactors. 30: 79-89.
    Pubmed CrossRef
  9. Zhang L, Zhang ZZ, Zhou YB, Ling TJ, Wan XC. 2013. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 53: 600-607.
    CrossRef
  10. Chen YS, Liu BL, Chang YN. 2010. Bioactivities and sensory evaluation of Pu-erh teas made from three tea liaves in an imporved pile fermentation process. J. Biosci. Bioeng. 109: 557563.
    Pubmed CrossRef
  11. Zhao M, Xiao W, Ma Y, Sun T, Yuan W, Tang N, et al. 2013. Sturcture and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library. World J. Microbiol. Biotechnol. 29: 1877-1884.
    Pubmed CrossRef
  12. Zhang W, Yang R, Fang W, Yan L, Lu J, Sheng J, Lv J. 2016. Characterization of thermohilic fungal community associated with pile fermentation of Pu-erh tea. Int. J. Food Microbiol. 227: 2933.
    Pubmed CrossRef
  13. Abe M, Takaoka N, Idemoto Y, Takagi C, Imai T, Nakasaki K. 2008. Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 124: 199-203.
    Pubmed CrossRef
  14. Zhu Y, Luo Y, Wang P, Zhao M, Li L, Hu X, Chen F. 2016. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem. 194: 643-649.
    Pubmed CrossRef
  15. Kim BH, Baek KH, Cho DH, Sung Y, Ahn CY, Oh HM, et al. 2009. Analysis of microbial community during the anaerobic dechlorination of tetrachloroethylene (PCE) in stream of Gimpo and Inchon areas. Kor. J. Microbiol. 45: 140-147.
  16. Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. 2014. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass & Bioenergy. 69: 95-105.
    CrossRef
  17. Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, Kim H-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175:578-585.
    Pubmed CrossRef
  18. Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, et al. 2010. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol. Lett. 32: 1829-1835.
    Pubmed CrossRef
  19. Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322.
    CrossRef
  20. Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695700.
  21. Jaspers E, Nauhaus K, Cypionka H, Overmann J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153-164.
    Pubmed CrossRef
  22. Ishii K, Fukui M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755.
    Pubmed KoreaMed CrossRef
  23. Forney LJ, Zhou X, Brown CJ. 2004. Molecular microbial ecology:land of the one-eyed king. Curr. Opin. Microbiol. 7: 210220.
    Pubmed CrossRef
  24. Lee JW, Kim BH, Ahn CY, Kim HS, Yoon BD, Oh HM. 2005. Analysis of microbial community during the anaerobic dechlorination of Perchloroethylene and Trichloroethylene. Korean J. Microbiol. 41: 281-286.
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
    Pubmed KoreaMed CrossRef
  26. Murray AE, Hollibaugh JT, Orrego C. 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel elctrophoresis of 16s rRNA fragments. Appl. Environ. Microbiol. 62: 2676-2680.
    Pubmed KoreaMed
  27. Nakayama T, Watanabe S, Mitsui K, Uchida H, Inouye I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55.
    CrossRef
  28. Kim BH, Ramanan R, Cho DH, Choi GG, La HJ, Ahn CY, et al. 2012. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One. 7: e37770.
    Pubmed KoreaMed CrossRef
  29. Cremonesi L, Firpo S, Ferrari M, Righetti PG, Gelfi C. 1997. Doublegradient DGGE for optimized detection of DNA point mutations. BioTechniques. 22: 326-330.
    Pubmed
  30. Petri R, Imhoff JF. 2001. Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol. 2001: 24.
    CrossRef
  31. Scarpellini P, Braglia S, Carrera P, Cedri M, Cichero P, Colombo A, et al. 1999. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob. Agents Chemother. 43: 2550-2554.
    Pubmed KoreaMed
  32. Baik KS, Seong CN, Hwang YM, Kim GA, Lee NR, Kim D, et al. 2012. Micorbial diversity of Ddek cha using DNA sequence analysis. J. Korean Tea Soc. 18: 86-91.
  33. Shim HJ, Cho JY, Moon JH, Kim SJ, Kim D, Shibn KH, Park KH. 2013. Changes of bacterial communites in microbial-fermented tea during fermentation. J. Korean Tea Soc. 19: 91-98.
  34. Zeida M, Wieser M, Yoshida T, Sugio T, Nagasawa T. 1998. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Appl. Environ. Microbiol. 64: 47434747.
  35. Zhao Y, Zhong GF, Yang XP, Hu XM, Mao DB, Ma YP. 2015. Bioconversion of lutein to form aroma compounds by Pantoea dispersa. Biotechnol. Lett. 37: 1687-1692.
    Pubmed CrossRef
  36. Adriaenssens EM, Guerrero LD, Makhalanyane TP, Aislabie JM, Cowan DA. 2014. Draft genome sequence of the aromatic hydrocarbon-degrading bacterium Sphingobium. sp. strain Ant17, isolated from antarctic soil. Genome Announc. 2:e00212.
    Pubmed KoreaMed CrossRef
  37. Aylward FO, McDonald BR, Adams SN, Valenzuela A, Schmidt Ra, Goodwin LA, et al. 2013. Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microbiol. 79: 37243733.
    Pubmed KoreaMed CrossRef
  38. Yi L, Su G, Hu G, Peng Q. 2016. Diversity study of microbial community in bacon using metagenomic analysis. J. Food Saf. DOI 10.1111/jfs.12334.
    CrossRef
  39. Nam YD, Park SI, Lim SI. 2012. Microbial composition of the Korean traditional food “kochujang” analyzed by a massive sequencing technique. J. Food Sci. 77: M250-M256.
    Pubmed CrossRef
  40. Peng Q, Yang Y, Guo Y, Han Y. 2015. Analysis of bacterial diversity during acetic acid fermentation of Tianjin Duliu aged vinegar by 454 pyrosequencing. Curr. Microbiol. 71: 195-203.
    Pubmed CrossRef
  41. Kim MJ, Kwak HS, Jung HY, Kim SS. 2016. Microbial communities related to sensory attribbutes in Korean fermented soy bean paste (doenjang). Food Res. Int. 89: 724-732.
    CrossRef
  42. Koh SC, Choi JH, Kim BH, Kim SE. 2008. Effect of quartz porphyry on growth of creeping bentgrss (Agrostis stolohifera) and soil bacterial community structures. Korean J. Microbiol. 44:317-325.
  43. Tian J, Zhu Z, Wu B, Wang L, Liu X. 2013. Bacterial and fungal communities in Pu'er tea samples of different ages. J. Food Sci. 78: M1249-M1256.
    Pubmed CrossRef
  44. Zhao ZJ, Tong HR, Zhou L, Wang EX, Liu QJ. 2010. Fungal colonization of Pu-erh in Yunnan. J. Food Saf. 30: 769-784.
    CrossRef

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.