Article Search
닫기

Microbiology and Biotechnology Letters

총설(Review)

View PDF

Environmental Microbiology (EM)  |  Microbial Ecology and Diversity

Microbiol. Biotechnol. Lett. 2020; 48(4): 399-421

https://doi.org/10.48022/mbl.2008.08015

Received: August 26, 2020; Accepted: October 12, 2020

중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects

Kyung Suk Cho*

Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

Correspondence to :
Kyung Suk  Cho,   kscho@ewha.ac.kr

Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environmentfriendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growthpromoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

Keywords: Plant growth-promoting bacteria, heavy metal, phytoremediation, contaminated soil, remediation efficiency

Graphical Abstract


  1. Shah V, Daverey A. 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Inno. 18: 100774.
    CrossRef
  2. Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. 2018. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int. J. Phytoremediation 20: 311-320.
    Pubmed CrossRef
  3. Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019: 6730305.
    CrossRef
  4. Mao X, Jiang R, Xiao W, Yu J. 2015. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 285: 419-435.
    Pubmed CrossRef
  5. Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, et al. 2017. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 37: 1062-1076.
    Pubmed CrossRef
  6. Hamid Y, Tang L, Irfan M, Cao X, Hussain B, Zahir M, et al. 2019. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660: 80-96.
    Pubmed CrossRef
  7. Rodrı ID, Dary M, Palomares AJ. 2008. Toxic effects of arsenic on Sinorhizobium - Medicago sativa symbiotic interaction. Environ. Poll. 54: 203-211.
    Pubmed CrossRef
  8. Chen C, Chiou I. 2008. Remediation of heavy metal-contaminated farm soil using turnover and attenuation method guided with a sustainable management framework. Environ. Eng. Sci. 25: 11-32.
    CrossRef
  9. Inoue Y, Katayama A. 2011. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: Risk-cost, riskenergy consumption and risk-CO2 emission. J. Hazard. Mater. 192: 1234-1242.
    Pubmed CrossRef
  10. Day SJ, Morse GK, Lester JN. 1997. The cost effectiveness of contaminated land remediation strategies. Sci. Total Environ. 201: 125-136.
    CrossRef
  11. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182: 247-268.
    CrossRef
  12. Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633: 206-219.
    Pubmed CrossRef
  13. Wan X, Lei M, Chen T. 2016. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 563-564: 796-802.
    Pubmed CrossRef
  14. Megharaj M, Naidu R. 2017. Soil and brownfield bioremediation. Microb. Biotechnol. 10: 1244-1249.
    Pubmed KoreaMed CrossRef
  15. Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, et al. 2020. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 246: 125823.
    Pubmed CrossRef
  16. Ahemad M. 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria:Paradigms and prospects. Arab. J. Chem. 12: 1365-1377.
    CrossRef
  17. Asad SA, Farooq M, Afzal A, West H. 2019. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. Chemosphere 217: 925-941.
    Pubmed CrossRef
  18. Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180: 169-181.
    Pubmed CrossRef
  19. Baby R, Saifullah B, Hussein MZ. 2019. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 14: 341.
    Pubmed KoreaMed CrossRef
  20. Kumar V, Singh J, Kumar P. 2019. Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. pp. 38-59. In: Contaminants in agriculture and environment: Health risks and remediation.
    CrossRef
  21. Breton J, Daniel C, Vignal C, Body-Malapel M, Garat A, Plé C, Foligné B. 2016. Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Sci. Rep. 6: 19200.
    Pubmed KoreaMed CrossRef
  22. Lal S, Ratna S, Said OB, Kumar R. 2018. Biosurfactant and exopolysaccharideassisted rhizobacterial technique for the remediation of heavy metal contaminated soil: An advancement in metal phytoremediation technology. Environ. Technol. Inno. 10: 243-263.
    CrossRef
  23. Singh PC, Srivastava S, Shukla D, Bist V, Tripathi P, Anand V, et al. 2018. Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad R. (eds) Mycoremediation and environmental sustainability. Fungal Biology. Springer, Cham. pp. 351-381. https://doi.org/10.1007/978-3-319-77386-5_14.
    KoreaMed CrossRef
  24. Vashishth A, Tehri N, Kumar P. 2019. The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution. Braz. J. Biol. Sci. 6: 39-51.
    CrossRef
  25. Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S. 2010. Effect of toxic metals on human health. Open Nutraceuticals J. 3: 94-99.
    CrossRef
  26. Alloway BJ. 1990. Heavy Metals in Soils. Blackie Academic and Professional/Chapman and Hall.
  27. Salt D, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, et al. 1995. Phytoremediation: A Novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 13: 468-474.
    Pubmed CrossRef
  28. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. 2011. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manag. 92: 2355-2388.
    Pubmed CrossRef
  29. Shakya AK, Ghosh PK. 2019. Stability against arsenic leaching from biogenic arsenosulphides generated under reduced environment. J. Cleaner Prod. 208: 1557-1562.
    CrossRef
  30. Ahemad M. 2015. Enhancing phytoremediation of chromiumstressed soils through plant-growth-promoting bacteria. J. Genet. Eng. Biotechnol. 13: 51-58.
    Pubmed KoreaMed CrossRef
  31. Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z. 2020. Phytoremediation:A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11: 359.
    Pubmed KoreaMed CrossRef
  32. Dalvi AA, Bhalerao SA. 2013. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2: 362-368.
  33. Subhashini V, Swamy AVVS. 2013. Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol. 3: 465-472.
  34. Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D. 2020. Bioremediation methods for the recovery of lead-contaminated Soils: A Review. Appl. Sci. 10: 3528.
    CrossRef
  35. Yadav BK, Siebel MA, van Bruggen JJA. 2011. Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean-Soil Air Water 39: 467-474.
    CrossRef
  36. Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metalsconcepts and applications. Chemosphere 91: 869-881.
    Pubmed CrossRef
  37. Lago-Vila M, Arenas-Lago D, Rodriguez-Seijo A, Andrade ML, Vega FA. 2019. Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. J. Environ. Manag. 235: 152-160.
    Pubmed CrossRef
  38. Souza RD, Ambrosini A, Passaglia LM. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38: 401-419.
    Pubmed KoreaMed CrossRef
  39. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Shen FT, et al. 2015. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int. J. Syst. Evol. Microbiol. 65: 4601-4607.
    Pubmed CrossRef
  40. Xiao-Hui FAN, Zhang SA, Xiao-Dan MO, Yun-Cong LI, Yu-Qing FU, Zhi-Guang LIU. 2017. Effect of PGPR and N source on plant growth and N, P uptake by tomato grown in calcareous soils. Pedosphere 27: 1027-1036.
    CrossRef
  41. Xiao Y, Wang X, Chen W, Huang Q. 2017. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34: 873-880.
    CrossRef
  42. Mumtaz MZ, Ahmad M, Jamil M, Hussain T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 202: 51-60.
    Pubmed CrossRef
  43. Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3: 185-190.
    CrossRef
  44. Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, et al. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Sci. Plant Nutr. 63: 233-241.
    CrossRef
  45. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587.
    Pubmed KoreaMed CrossRef
  46. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater. 250: 477-483.
    Pubmed CrossRef
  47. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, et al. 2013. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90: 1960-1965.
    Pubmed CrossRef
  48. Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164.
    Pubmed CrossRef
  49. Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotox. Environ. Safe. 156: 225-246.
    Pubmed CrossRef
  50. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C. 2014. Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem. 68: 300-308.
    CrossRef
  51. Tiwari S, Singh SN, Garg SK. 2012. Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ. Technol. 33: 2405-2413.
    Pubmed CrossRef
  52. Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Indian Microbiol. Biotechnol. 34: 635-648.
    Pubmed CrossRef
  53. Kang BG, Kim WT, Yun HS, Chang SC. 2010. Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol. Rep. 4: 179-183.
    CrossRef
  54. Arshad M, Saleem M, Hussain S. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol. 25: 356-362.
    Pubmed CrossRef
  55. Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26: 1-20.
    CrossRef
  56. Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39.
    Pubmed CrossRef
  57. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1‐aminocyclopropane‐1‐carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181: 413-423.
    Pubmed CrossRef
  58. Okazaki S, Nukui N, Sugawara M, Minamisawa K. 2004. Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ. 19: 99-111.
    CrossRef
  59. Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189.
    CrossRef
  60. Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, et al. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9: 673-682.
    CrossRef
  61. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, et al. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115-124.
    Pubmed CrossRef
  62. Liu F, Xing S, Ma H, Du Z, Ma B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164.
    Pubmed CrossRef
  63. Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophoreproducing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142-149.
    Pubmed CrossRef
  64. Radzki W, Mañero FJG, Algar E, García JAL, García-Villaraco A, Solano BR. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Leeuwenhoek 104: 321-330.
    Pubmed KoreaMed CrossRef
  65. Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H. 2017. Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J. Plant Nutr. 40: 736-746.
    CrossRef
  66. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, et al. 2011. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ. Pollut. 159: 1369-1374.
    Pubmed CrossRef
  67. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. 2015. Improved plant resistance to drought is promoted by the root‐associated microbiome as a water stress‐dependent trait. Environ. Microbiol. 17: 316-331.
    Pubmed CrossRef
  68. Ashraf M, Hasnain S, Berge O, Mahmood T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 40: 157-162.
    CrossRef
  69. Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard. Mater. 151: 364-371.
    Pubmed CrossRef
  70. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12: 633-654.
    Pubmed KoreaMed CrossRef
  71. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68: 1996-2002.
    Pubmed CrossRef
  72. Venkatesh NM, Vedaraman N. 2012. Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann. Microbiol. 62: 85-91.
    CrossRef
  73. Pacheco GJ, Ciapina EMP, Gomes EdB, Pereira Junior N. 2010. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz. J. Microbiol. 41: 685-693.
    Pubmed KoreaMed CrossRef
  74. Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML. 2014. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ. Sci. Pollut. Res. 21: 9742-9753.
    Pubmed CrossRef
  75. Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, et al. 2015. Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J. Toxicol. Environ. Health Part A 78: 931-944.
    Pubmed CrossRef
  76. Azcón R, del Carmen Perálvarez M, Roldán A, Barea JM. 2010. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb. Ecol. 59: 668-677.
    Pubmed CrossRef
  77. Oves M, Khan MS, Zaidi A. 2013. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur. J. Soil Biol. 56: 72-83.
    CrossRef
  78. Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ. 2014. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by upregulation of conserved salinity responsive factors in plants. Mol. Cells 37: 109.
    Pubmed KoreaMed CrossRef
  79. Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, et al. 2014. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J. Plant Interact. 9: 577-584.
    CrossRef
  80. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, et al. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086.
    Pubmed KoreaMed CrossRef
  81. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, et al. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 104: 285-293.
    Pubmed CrossRef
  82. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, et al. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 15: 59.
    Pubmed KoreaMed CrossRef
  83. Marinho BA, Cristóvão RO, Boaventura RAR, Vilar VJP. 2019. As (III) and Cr (VI) oxyanion removal from water by advanced oxidation/reduction processes - a review. Environ. Sci. Pollut. Res. 26: 2203-2227.
    Pubmed CrossRef
  84. Ghosh P, Rathinasabapathi B, Ma LQ. 2011. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris Vittata L.. Bioresour. Technol. 102: 8756-8761.
    Pubmed CrossRef
  85. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G. 2011. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus Deltoides Lh05-17. J. Appl. Microbiol. 111: 1065-1074.
    Pubmed CrossRef
  86. Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, et al. 2013. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica Juncea (L.) Czern. Var. R-46. J. Hard Mater. 262: 1039-1047.
    Pubmed CrossRef
  87. Srivastava S, Singh N. 2014. Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting acinetobacter sp. Ecol. Eng. 70: 146-153.
    CrossRef
  88. Pandey N, Bhatt R. 2016. Role of soil associated exiguobacterium in reducing arsenic toxicity and promoting plant growth in vigna radiata. Eur. J. Soil Biol. 75: 142-150.
    CrossRef
  89. Pandya M, Rajput M, Rajkumar S. 2015. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84: 80-89.
    CrossRef
  90. Das S, Jean JS, Chou ML, Rathod J, Liu CC. 2016. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza Sativa L.: Implications for mitigation of arsenic contamination in paddies. J. Hard Mater. 302: 10-18.
    Pubmed CrossRef
  91. Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, et al. 2018. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere:A step towards arsenic rhizoremediation. Sci. Total Environ. 610: 1239-1250.
    Pubmed CrossRef
  92. Xiao AW, Li Z, Li WC, Ye ZH. 2020. The effect of plant growthpromoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 242: 125136.
    Pubmed CrossRef
  93. Guarino F, Miranda A, Castiglione S, Cicatelli A. 2020. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251: 126310.
    Pubmed CrossRef
  94. Yang C, Ho YN, Inoue C, Chien MF. 2020. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci. Total Environ. 740: 140137.
    Pubmed CrossRef
  95. Liu C, Lin H, Li B, Dong Y, Yin T. 2020. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Ecotox. Environ. Safe. 202: 110958.
    Pubmed CrossRef
  96. Moreno JL, Hernandez T, Perez A, Garcia C. 2002. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Appl. Soil Ecol. 21: 149-158.
    CrossRef
  97. Prapagdee B, Chanprasert M, Mongkolsuk S. 2013. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92: 659-666.
    Pubmed CrossRef
  98. Guo J, Chi J. 2014. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375: 205-214.
    CrossRef
  99. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, et al. 2014. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103: 99-104.
    Pubmed CrossRef
  100. Begum N, Afzal S, Zhao H, Lou L, Cai Q. 2018. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum Virgatum L.) biomass. Acta Physiol. Plant. 40: 170.
    CrossRef
  101. Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR. 2014. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd tolerant bacterial strains. Pedosphere 24: 322-329.
    CrossRef
  102. Ahmad I, Javed M, Hafiz A, Asghar N. 2015. Differential effects of plant growth promoting rhizobacteria on maize growth and cadmium uptake. J. Plant Growth Regul. 32: 303-315.
    CrossRef
  103. Kamran MA, Syed JH. 2015. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca Sativa. Environ. Sci. Pollut. Res. 22: 9275-9283.
    Pubmed CrossRef
  104. Pramanik K, Mitra S, Sarkar A, Maiti TK. 2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J. Hazard. Mater. 351: 317-329.
    Pubmed CrossRef
  105. Kumari M, Thakur IS. 2018. Biochemical and proteomic characterization of Paenibacillus sp. ISTP10 for its role in plant growth promotion and in rhizostabilization of cadmium. Bioresour. Technol. Reports 3: 59-66.
    CrossRef
  106. Wani PA, Khan MS. 2010. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem. Toxicol. 48: 3262-3267.
    Pubmed CrossRef
  107. Khan N, Mishra A, Chauhan PS, Sharma YK, Nautiyal CS. 2012. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie Leeuwenhoek 101: 453-459.
    Pubmed CrossRef
  108. Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J. 2016. Role of ACC deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ. Earth Sci. 75: 1-14.
    CrossRef
  109. Rosariastuti R, Prijambada ID, Ngadiman, Prawidyarini GS, Putri AR. 2013. Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. J. Basic Appl. Sci. 9: 243-251.
    CrossRef
  110. Soni SK, Singh R, Awasthi A, Kalra A. 2014. A Cr (Vi)-reducing Microbacterium Sp. Strain sucr140 enhances growth and yield of Zea mays in Cr (Vi) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res. 21: 1971-1979.
    Pubmed CrossRef
  111. Danish S, Zafar-ul-Hye M. 2019. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 9: 5999.
    Pubmed KoreaMed CrossRef
  112. Maqbool Z, Asghar HN, Shahzad T, Hussain S, Riaz M, Ali S, et al. 2015. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra(Hibiscus esculentus L.) in chromium contaminated soils. Ecotox. Environ. Safe. 114: 343-349.
    Pubmed CrossRef
  113. Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, et al. 2020. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere 254: 126724.
    Pubmed CrossRef
  114. Hadi F, Bano A. 2010. Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak. J. Bot. 42: 4363-4370.
  115. Saleem M, Asghar HN, Zahir ZA, Shahid N. 2018. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195: 606-614.
    Pubmed CrossRef
  116. Long XX, Chen XM, Wong JWC, Wei ZB, Wu QT. 2013. Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. T. Nonferr. Metal Soc. 23: 2389-2396.
    CrossRef
  117. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA. 2015. Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J. Hazard. Mater. 283: 490-499.
    Pubmed CrossRef
  118. Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, et al. 2017. Phytoremediation of a multi contaminated soil: Mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J. Soils Sediments 17: 1224-1236.
    CrossRef
  119. Abdelkrim S, Jebara SH, Saadani O, Abid G, Taamalli W, Zemni H, et al. 2020. In situ effects of Lathyrus sativus- PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. Ecotox. Environ. Safe. 192: 110260.
    Pubmed CrossRef
  120. Montalbán B, Thijs S, Lobo MC, Weyens N, Ameloo M, Vangronsveld J, et al. 2017. Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int. J. Mol. Sci. 18: 2026.
    Pubmed KoreaMed CrossRef
  121. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, et al. 2010. Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108: 1471-1484.
    Pubmed CrossRef
  122. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, et al. 2014. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd Pb, Zn uptake by Brassica napus. Int. J. Phytorem. 16: 321-333.
    Pubmed CrossRef
  123. Płociniczak T, Sinkkonen A, Romantschuk M, Sułowicz S, Piotrowska-Seget Z. 2016. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front. Plant Sci. 7: 1-10.
    Pubmed KoreaMed CrossRef
  124. Zainab N, Amna Din BU, Javed MT, Afridi MS, Mukhtar T, Kamran MA, et al. 2020. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACCdeaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 152: 90-99.
    Pubmed CrossRef
  125. Guo J, Tang S, Ju X, Ding Y, Liao S, Song N. 2011. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia Sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J. Microbiol. Biotechnol. 27: 2835-2844.
    CrossRef
  126. Guo J, Lv X, Jia H, Hua L, Ren X, Muhammad H, et al. 2019. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. J. Environ. Sci. 88: 361-369.
    Pubmed CrossRef
  127. Rilling JI, Acuña JJ, Nannipieri P, Cassane F, Maruyama F, Jorquera MA. 2019. Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol. Biochem. 130: 205-219.
    CrossRef
  128. Compant S, Clément C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669-678.
    CrossRef
  129. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93.
    CrossRef
  130. Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, et al. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121: 102-117.
    CrossRef
  131. Singh G, Singh N, Marwaha TS. 2009. Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol. Mol. Biol. Plants 15: 87-92.
    Pubmed KoreaMed CrossRef
  132. Depret G, Laguerre G. 2008. Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol. 179: 224-235.
    Pubmed CrossRef
  133. Burns JH, Anacker BL, Strauss SY, Burke DJ. 2015. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB PLANTS 7 plv030-plv030.
    Pubmed KoreaMed CrossRef
  134. Weyens N, Boulet J, Adriaensen D, Timmermans JP, Prinsen E, Oevelen S, et al. 2012. Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356: 217-230.
    CrossRef
  135. Vande Broek A, Michiels J, van Gool A, Vanderleyden J. 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol. Plant Microbe Interact. 6: 592-600.
    CrossRef
  136. Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18: 1918-1927.
    CrossRef
  137. Afzal M, Yousaf S, Reichenauer T, Sessitsch A. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int. J. Phytoremediation 14: 35-47.
    Pubmed CrossRef
  138. Sirohi G, Upadhyay A, Srivastava PS, Srivastava S. 2015. PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J. Soil Sci. Plant Nutr. 15: 202-216.
    CrossRef
  139. Gamalero E, Lingua G, Berta G, Lemanceau P. 2003. Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23: 407-418.
    CrossRef
  140. Watt M, Hugenholtz P, White R, Vinall K. 2006. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ. Microbiol. 8: 871-884.
    Pubmed CrossRef
  141. Rothballer M, Schmid M, Hartmann A. 2003. In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34: 261-279.
  142. Oliveira AL, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A. 2009. Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur. J. Soil Biol. 45: 106-113.
    CrossRef
  143. Wu CH, Hwang YC, Lee W, Mulchandani A, Wood TK, Yates MV, et al. 2008. Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. Appl. Microbiol. Biotechnol. 79: 511-518.
    Pubmed CrossRef
  144. Compant S, Mathieu F. 2013. Use of DOPE-FISH tool to better visualize colonization of plants by beneficial bacteria? An example with Saccharothrix algeriensis NRRL B-24137 colonizing grapevine plants. In: Molecular Microbial Ecology of the Rhizosphere. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp.929-931.
    CrossRef
  145. Podile AR, Kishore K. 2006. Plant growth-promoting rhizobacteria. In: Plant-associated Bacteria, pp. 195-230.
    CrossRef
  146. Chen Z, Sheng X, He L, Huang Z, Zhang W. 2013. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. J. Hazard. Mater. 244-245: 709-717.
    Pubmed CrossRef
  147. Menezes-Blackburn D, Inostroza NG, Gianfreda L, Greiner R, Mora ML, Jorquera MA. 2016. Phytase-producing Bacillus sp. inoculation increases phosphorus availability in cattle manure. J. Soil Sci. Plant Nutr. 16: 200-210.
    CrossRef
  148. Jansson JK. 1995. Tracking genetically engineered microorganisms in nature. Curr. Opin. Biotechnol. 6: 275-283.
    CrossRef
  149. Fernandes P, Simöes-Araujo J, Varial de Melo LH, Souza Galisa P, Leal L, Baldani J, et al. 2014. Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. Afr. J. Microbiol. Res. 8: 2937-2946.
    CrossRef
  150. Couillerot O, Poirier MA, Prigent-Combaret C, Mavingui P, Caballero-Mellado J, Moënne-Loccoz Y. 2010. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. J. Appl. Microbiol. 109: 528-538.
    CrossRef
  151. Pereira TP, Do Amaral FP, Dall'Asta P, Brod FC, Arisi AC. 2014. Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae strain SmR1 in maize roots. Mol. Biotechnol. 56: 660-670.
    Pubmed CrossRef
  152. Brandt J, Albertsen M. 2018. Investigation of detection limits and the influence of DNA extraction and primer choice on the observed microbial communities in drinking water samples using 16S rRNA gene amplicon sequencing. Front Microbiol. 9: 2140.
    Pubmed KoreaMed CrossRef
  153. Kong Z, Wu Z, Glick BR, He S, Huang C, Wu L. 2019. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicol. Environ. Safe. 183: 109504.
    Pubmed CrossRef
  154. Quadt-Hallmann A, Kloepper J. 1996. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can. J. Microbiol. 42: 1144-1154.
    CrossRef
  155. Hansen M, Kragelund L, Nybroe O. 1997. Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol. 23: 353-360.
    CrossRef
  156. Krishnen G, Kecskés ML, Rose MT, Geelan-Small P, Amprayn K, Pereg L, et al. 2011. Field monitoring of plant-growth-promoting rhizobacteria by colony immunoblotting. Can. J. Microbiol. 57: 914-922.
    Pubmed CrossRef
  157. Schloter M, Borlinghaus R, Bode W, Hartmann A. 1993. Direct identification, and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy. J. Microsc. 171: 173-177.
    CrossRef
  158. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, et al. 1997. Root colonization of different plants by plantgrowthpromoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl. Environ. Microbiol. 63: 2038-2046.
    Pubmed KoreaMed CrossRef
  159. Garcia J, Schloter M, Durkaya T, Hartmann A, Manero F. 2003. Colonization of pepper roots by a plant growth promoting Pseudomonas fluorescens strain. Biol. Fert. Soils 37: 381-385.
    CrossRef
  160. Grilli-Caiola MG, Canini A, Botta A, Gallo MD. 2004. Localization of Azospirillum brasilense Cd in inoculated tomato (Lycopersicon esculentum Mill.) roots. Ann. Microbiol. 54: 365-380.
  161. Mourya S, Jauhri KS. 2002. lacZ tagging of phosphate solubilizing Pseudomonas striata for rhizosphere colonization. Indian J. Biotechnol. 1: 275-279.
  162. Solanki M, Garg FC. 2014. The use of lacZ marker in enumeration of Azotobacter chroococcum in carrier based inoculants. Braz. J. Microbiol. 45: 595-601.
    Pubmed KoreaMed CrossRef
  163. Compant S, Reiter B, Sessitsch A, Clément C, Barka EA, Nowak J. 2005. Endophytic colonization of Vitis vinifera L. by plant growth- promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693.
    Pubmed KoreaMed CrossRef
  164. De Weger L, Kuiper I, Van Der Bij A, Lugtenberg BJ. 1997. Use of a lux-based procedure to rapidly visualize root colonisation by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Leeuwenhoek 72: 365-372.
    Pubmed CrossRef
  165. Kragelund L, Hosbond C, Nybroe O. 1997. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol. 63: 4920-4928.
    Pubmed KoreaMed CrossRef
  166. Batista L, Irisarri P, Rebuffo M, Cuitiño MJ, Sanjuán J, Monza J. 2015. Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biol. Fert. Soils 51: 11-20.
    CrossRef
  167. Wang C, Wang D, Zhou Q. 2004. Colonization and persistence of a plant growth promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Can. J. Microbiol. 50: 475-481.
    Pubmed CrossRef
  168. De Weger LA, Dunbar P, Mahafee WF, Lugtenberg BJ, Sayler GS. 1991. Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57: 3641-3644.
    Pubmed KoreaMed CrossRef
  169. Gaby JC, Buckley DH. 2014. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014: bau001, doi:10.1093/database/bau001.
    Pubmed KoreaMed CrossRef
  170. Ludueña LM, Anzuay MS, Angelini JG, Barros G, Luna MF, Monge MP, et al. 2017. Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Serratia sp. S119. Symbiosis 72: 31-43.
    CrossRef
  171. Jijón-Moreno S, Marcos-Jiménez C, Pedraza RO, Ramírez-Mata A, de Salamone IG, Fernández-Scavino A, et al. 2015. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Antonie Van Leeuwenhoek 107: 1501-1517.
    Pubmed CrossRef
  172. Peng J, Wu D, Liang Y, Li L, Guo Y. 2019. Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J. Basic Microbiol. 59: 402-411.
    Pubmed CrossRef
  173. Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, et al. 2014. Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol. Fert. Soils 50: 1141-1153.
    CrossRef

Starts of Metrics

Share this article on :

  • mail

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.