Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Food, Environment, and Other Topics in Biotechnology

Microbiol. Biotechnol. Lett. 2013; 41(3): 350-357

https://doi.org/10.4014/kjmb.1303.03004

Received: March 13, 2013; Accepted: August 14, 2013

북극 지의류 Stereocaulon spp로부터 분리한 여러 미생물의 항산화 성질

Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp.

Mi-Kyeong Kim 1, Hyun Park 2 and Tae-Jin Oh 1*

1Department of Pharmaceutical Engineering, SunMoon University, Asansi, Chungnam 336-708, Korea, 2Korea Polar Research Institute (KOPRI), Songdo TechnoPark, Yeonsu-gu, Incheon 406-840, Korea

Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial, antifungal, antiviral, antitumor, antioxidant and anti-inflammatory etc. Among the symbionts of lichens, of the bacterial communities of lichen symbionts little is known. In this study, we isolated 4 microbial species from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant properties using 1,1-diphenyl-2-picryl- hydrazyl assay as well as 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) assay. Total phenolic contents and total flavonoid contents were also measured. A potent radical scavenging activity was detected in a number of the lichen extracts. Among the 4 species tested in this study, the ethyl acetate extract of Bosea vestrisii 36546(T) exhibited the strongest free radical scavenging activity, with an inhibition rate of 86.8% in DPPH and 75.2% in ABTS assays. Overall, these results suggest that lichen-bacteria could be a potential source of natural antioxidants.

Keywords: ABTS, antioxidant property, Arctic lichen, DPPH, Stereocaulon spp, TPC

  1. Alegre I, Viñas I, Usall J, Anguera M, Altisent R, Abadias M. 2013. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiol. 33: 139-148.
    Pubmed CrossRef
  2. Alegre I, Viñas I, Usall J, Teixidó N, Figge MJ, Abadias M. 2013. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol. 34:390-399.
    Pubmed CrossRef
  3. Arnao MB, Cano A, Acosta M. 2010. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73:239-244.
    CrossRef
  4. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60: 134-139.
    Pubmed CrossRef
  5. Bates ST, Cropsey GWG, Caporaso G, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314.
    Pubmed CrossRef
  6. Benzie IFF, Strain JJ. 1996. The ferric reducing antioxidant ability of plasma (FRAP) as a measure of “antioxidant power” :the FRAP assay. Anal. Biochem. 239: 70-76.
    Pubmed CrossRef
  7. Benzie IFF, Strain JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299: 15-27.
    CrossRef
  8. Bhattarai HD, Kim T, Oh H, Yim JH. 2008. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 49: 29-31.
    CrossRef
  9. Bhattarai HD, Kim T, Oh H, Yim JH. 2013. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot. (Tokyo). [Epub ahead of print]
    Pubmed CrossRef
  10. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
    CrossRef
  11. Brodo IM, Sharnoff SD, Sharnoff S. 2001. Stereocaulon (pp. 663-670) In, Lichens of North America. Yale University Press, New Haven.
  12. Cardinale M, Puglia AM, Grube M. 2006. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol. Ecol. 57: 484-495.
    Pubmed CrossRef
  13. Cardinale M, Jr Castro JVD, Müller H, Berg G, Grube M. 2008. In situanalysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66: 63-71.
    Pubmed CrossRef
  14. Coleman JJ, Ghosh S, Okoli I, Mylonakis E. 2011. Antifungal activity of microbial secondary metabolites. PLoS One. 6:e25321.
    Pubmed CrossRef
  15. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physic. India. 52: 794-804.
    Pubmed
  16. Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68: 471474.
    CrossRef
  17. Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401-415.
    Pubmed CrossRef
  18. Grice HC. 1986. Safety evaluation of butylatedhydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127-1130.
  19. Halliwell B. 1997. Antioxidant and human disease: a general introduction. Nutr. Rev. 55: 44-49.
    CrossRef
  20. Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, et al. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461-471.
    Pubmed
  21. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Ainsworth & Bisby’s dictionary of the fungi. 8th edition. CAB international, Wallingford.
  22. Ingolfsdottir K, Chung GAC, Skulason VG, Gissurarson SR, Vilhelmsdottir M. 1998. Antimycobacterial activity of lichens metabolites in vitro. Eur. J. Pharm. Sci. 6: 141-144.
    CrossRef
  23. Kosani MM, Rankovi BR, Stanojkovi TP. 2012. Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J. Sci. Food Agric. 9: 1909-1916.
    Pubmed CrossRef
  24. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, et al. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 70: 388-391.
  25. La Scola B, Mallet MN, Grimont PA, Raoult D. 2003. Bosea eneae sp. nov, Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov, isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996) Int. J. Syst. Evol. Microbiol. 53: 15-20.
    Pubmed CrossRef
  26. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid,(+)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39: 25412543.
    CrossRef
  27. Lawrey JD. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. J. Bryol. 92: 326-328.
    CrossRef
  28. Lin MY, Chang FY. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45: 1617-1622.
    Pubmed CrossRef
  29. Luo H, Yamamoto Y, Jeon HS, Liu YP, Jung JS, Koh YJ, et al. 2011. Production of anti-Helicobacter pylori metabolite by the lichen-forming fungus Nephromopsis pallescens. J. Microbiol. 49: 66-70.
    Pubmed CrossRef
  30. Luo H, Yamamoto Y, Liu Y, Jung JS, Kahng HY, Koh YJ, et al. 2010. The in vitro antioxidant properties of Chinese highland lichens. J. Microbiol. Biotechnol. 20: 1524-1528.
    Pubmed CrossRef
  31. Manojlovi N, Rankovi B, Kosani M, Vasiljevi P, Stanojkovi T. 2012. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 19: 1166-1172.
    Pubmed CrossRef
  32. Molnár K, Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch. C. 65: 157-173.
    Pubmed
  33. Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. 2009. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulonsasakii. Bioorg. Med. Chem. 19: 3679-3681.
    Pubmed CrossRef
  34. Muller K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56: 9-16.
    Pubmed CrossRef
  35. Nash III TH. 1996. Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 1-7.
  36. Oksanen I. 2006. Ecological and biotechnological aspects of lichens. J. Microbial. Biotechnol. 73: 723-734.
    Pubmed CrossRef
  37. Paudel B, Bhattarai HD, Prasad Pandey D, Hur JS, Hong SG, Kim IC, et al. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45: 387-391.
    Pubmed CrossRef
  38. Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH. 2008. Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother. Res. 22: 1269-1271.
    Pubmed CrossRef
  39. Pietta PG. 2000. Flavonoids as Antioxidants. J. Nat. Prod. 63:1035-1042.
    Pubmed CrossRef
  40. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 53:4290-4302.
    Pubmed CrossRef
  41. Rankovi B, Rankovi D, Mari D. 2010. Antioxidant and antimicrobial activity of some lichen species. Mikrobiologiia 79:812-818.
  42. Rice-Evans CA, Miller NJ, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152159.
    CrossRef
  43. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375-383.
    Pubmed CrossRef
  44. Rice-Evans CA, Nicholas J, Miller J, Paganga G. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956.
    CrossRef
  45. Seo C, Sohn JH, Park SM, Yim JH, Lee HK, Oh H. 2008. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. J. Nat. Prod. 71: 710-712.
    Pubmed CrossRef
  46. Silva NMV, Pereira TM, Filho SA, Matsuura T. 2011. Taxonomic characterization and antimicrobial activity of actinomycetes associated with foliose lichens from the Amazonian ecosystem. Aust. J. Basic. Appl. Sci. 5: 910-918.
  47. Slinkard K, Singleton VL. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 49-55.
  48. Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188-200.
    Pubmed CrossRef
  49. Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V. 2011. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25: 1827-1837.
    Pubmed CrossRef
  50. Wichi HP. 1988. Enhanced tumor development by butylatedhydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717-723.
    CrossRef
  51. Yamamoto Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenol. 1: 11-22.
  52. Zhang S, Liu L, Su Y, Li H, Sun Q, Liang X, et al. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbial. Res. 5: 5149-5201.
  53. Zhishen JT, Mengcheng WJ. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on super oxide radicals. Food Chem. 64: 555-559.
    CrossRef

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.