Bas C. 1983. Flammulina in western Europe. Persoonia-Molecular Phylogeny and Evolution of Fungi 12: 51-66.
Ripková S, Hughes K, Adamčík S, Kučera V, Adamčíková K. 2010. The delimitation of Flammulina fennae. Mycol. Prog. 9: 469-484.
Pérez-Butrón JL, Ferdnández-Vicente J. 2007. Una nuevaespecie de Flammulina P. Karsten, F. cephalariae (Agaricales) encontradaen España. Rev. Catalana. Micol. 29: 81-91.
Eriksson K, Blanchette RA, Ander P. 1990. Morphological aspects of wood degradation by fungi and bacteria. pp. 1-87. In Microbial and enzymatic degradation of wood and wood components. Springer: Berlin, Heidelberg.
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. 2014. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. 78: 614-649.
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydratebinding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-781.
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495.
Shoseyov O, Shani Z, Levy I. 2006. Carbohydrate binding modules:biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70: 283-295.
Zhao Z, Liu H, Wang C, Xu JR. 2013. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14: 274.
Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, et al. 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One 9: e93560.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 21142120.
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829.
Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33: W465-W467.
Buchfink B, Xie C, Huson D. 2015. Fast and sensitive protein alignment using DIAMOND, Nat. Methods 12: 59-60.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285.
Lowe TM, Eddy SR. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.
Emms D, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16: 157.
Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105-1115.
Staats M, van Kan JA. 2012. Genome update of Botrytis cinerea strains B05. 10 and T4. Eukaryot. Cell 11: 1413-1414.
Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagye LG, et al. 2012. Genome sequence of the button mushroom Agaricusbisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl. Acad. Sci. USA 109: 17501-17506.
Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, et al. 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl. Acad. Sci. USA 107: 11889-11894.
Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12:R116.
Janbon G, Ormerod KL, Paulet D, Byrnes III EJ, Yadav V, Chatterjee G, et al. 2014. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 10: e1004261.
Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F, et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88-92.
Chen L, Gong Y, Cai Y, Liu W, Zhou Y, Xiao Y, et al. 2016. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One 11: e0160336.
Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859-868.
Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22: 695-700.
Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel‐Tarver L, et al. 2006. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23: 857-865.
Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol. 28: 957-963.
Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF. 2017. Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol. Biofuels 10: 170.
Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97-101.
Yin Y, Mao X, Yang JC, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40: W445-W451.
Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
Breton C, Šnajdrová L, Jeanneau C, Koča J, Imberty A. 2006. Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R-37R.
Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases:structures, functions, and mechanisms. Annu. Rev. Biochem. 77: 521-555.
Paulson JC, Weinstein J, Ujita EL, Riggs KJ, Lai H. 1987. The membranebinding domain of a rat liver Golgi sialyltransferase. Biochem. Soc. Trans. 15: 618-620.
Wickner WT, Lodish HF. 1985. Multiple mechanisms of protein insertion into and across membranes. Science 230: 400-407.
Chou MM, Kendall DA. 1990. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. J. Biol. Chem. 265: 2873-2880,
IngMarie N, Whitley P, von Heijne G. 1994. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell Biol. 126: 11271132.
Coutinho PM, Deleury E, Davies GJ, Henrissat B. 2003. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328: 307-317.
Campbell JA, Davies GJ, Bulone V, Henrissat B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929-939.
Mukai Y, Hirokawa T, Tomii K, Asai K, Akiyama Y, Suwa M. 2008. Identification of glycosyltransferases focusing on Golgi transmembrane region, Trends Glycosci. Glycotechnol. 19: 41-47.
Berlemont R, Martiny AC. 2016. Glycoside hydrolases across environmental microbial communities. PLoS Comput. Biol. 12:e1005300.
Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. 1995. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase. J. Biol. Chem. 270: 3081-3088.
Masuda S, Endo K, Koizumi N, Hayami T, Fukazawa T, Yatsunami R, et al. 2006. Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles 10: 251-255.
Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, et al. 2011. Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J. Biol. Chem. 286: 27848-27854.
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35: W585-W587.
Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14: 259-263.
Berlemont R. 2017. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci. Rep. 7: 222.
Eichlerová I, Homolka L, Žifčáková L, Lisá L, Dobiášová P, Baldrian P. 2015. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 13:10-22.
Treseder KK, Lennon JT. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79: 243-262.
Sutherland IW. 1995. Polysaccharide lyases. FEMS Microbiol. Rev. 16: 323-347.
Yip VL, Withers SG. 2006. Breakdown of oligosaccharides by the process of elimination. Curr. Opin. Chem. Biol. 10: 147-155.
Garron ML, Cygler M. 2010. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20: 1547-1573.
van den Brink J, de Vries RP. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 91:1477-1492.
Xavier-Santos S, Carvalho CC, Bonfá M, Silva R, Capelari M, Gomes E. 2004. Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. Folia Microbiol. (Praha) 49: 46-52.
The CAZypedia Consortium. 2018. Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 28: 3-8.
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, et al. 2012. Comparative genomics of Ceriporiopsissubvermispora and Phanerochaetechrysosporium provide insight into selective ligninolysis. Proc. Natl. Acad. Sci. USA 109: 54585463.
Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L. 2014. Carbohydrate-binding modules of fungal cellulases:occurrence in nature, function, and relevance in industrial biomass conversion. Adv. Appl. Microbiol. 88: 103-165.
Bornscheuer UT. 2002. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26: 73-81.
Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.
Biely P. 2012. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol. Adv. 30: 1575-1588.
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. 2016. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylanesterases. Enzyme Microb. Technol. 93: 79-91.
Christov LP, Prior BA. 1993. Esterases of xylan-degrading microorganisms:Production, properties, and significance. Enzyme Microb. Technol. 15: 460-475.
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6: 41.
Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. 2013. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8: e65633.
Fernandez IS, Ruiz-Duenas FJ, Santillana E, Ferreira P, Martinez MJ, Martinez AT, et al. 2009. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr. D65: 1196-1205.
Varela E, Martinet MJ, Martinez AT. 2000. Arylalcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases. Biochem. Biophys. Acta Protein Struct. Mol. Enzymol. 1481: 202-208.
Wierenga RK, Drenth J, Schulz GE. 1983. Comparison of the 3dimensional protein and nucleotide structure of the FAD-binding domain of parahydroxybenzoate hydroxylase with the FADbinding as well as NADPH-binding domains of glutathionereductase. J. Mol. Biol. 167: 725-739.
Ruiz-Dueñas FJ, Martínez AT. 2009. Microbial degradation of lignin:how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb. Biotechnol. 2: 164-177.
Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Río JC, Gutiérrez A. 2009. Enzymatic delignification of plant cell wall: from nature to mill. Curr. Opin. Biotechnol. 20: 348-357.
Guillén F, Martínez MJ, Gutiérrez A, Del Rio JC. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8: 195-204.
Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, WojtasWasilewska M, Cho, NS, et al. 1999. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27: 175-185.