Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Agricultural Microbiology

Microbiol. Biotechnol. Lett. 2017; 45(4): 343-353

https://doi.org/10.4014/mbl.1712.12010

Received: December 13, 2017; Accepted: December 18, 2017

Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water

A.M. Dalia 1, 2, T.C. Loh 1, A.Q. Sazili 1, M.F. Jahromi 3 and A. Samsudin 1*

1Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia, 2Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan, 3Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

In the present study, the isolation of selenium (Se)-enriched bacteria from rumen fluid and hot spring water was carried out. Rumen fluid samples were taken from cannulated goats fed a basal diet and the water samples were collected from Selayang hot spring, Selangor- Malaysia. A total number of 140 Se-tolerant isolates were obtained aerobically using an Se-enriched medium and spread plate technique. All the isolates were initially screened for the ability to transform the Se-containing medium to a red-orange culture using a spectrophotometer. Twenty isolates of dark red-orange medium were selected for a screening of the highest Se-containing protein accumulating strains using the dialysis technique and icp.ms to measure the Se content. Four isolates, identified as Enterobacter cloacae (ADS1, ADS7, and ADS11), and Klebsiella pneumoniae (ADS2) from rumen fluid origin, as well as, one isolate from hot spring water (Stenotrophomonas maltophilia (ADS18)), were associated with the highest biomass organic Se-containing protein when grown in a medium enriched with 10 μg/ml sodium selenite. In addition, around 50 μg/100 μg of the absorbed inorganic Se was accumulated as an organic form. Organic Se-containing protein in all the selected strains showed antioxidant properties in the range of 0.306 to 0.353 Trolox equivalent antioxidant capacity (TEAC) mg/ml. Therefore, these strains may offer a potential source of organic Se due to their Se-tolerant nature and higher biomass organic to inorganic Se ratio.

Keywords: Accumulation, antioxidant, bacteria, isolation, organic selenium

  1. Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G. 2000. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol. 14: 43-47.
    CrossRef
  2. Fordyce FM. 2013. Selenium deficiency and toxicity in the environment, pp. 373-415. In Selinus O, Brian E, Davies CB, Theo CD (eds.), Essentials of Medical Geology. Springer, Netherlands.
    CrossRef
  3. Simmons DB, Wallschläger D. 2005. A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ. Toxicol. Chem. 24: 1331-1343.
    Pubmed CrossRef
  4. Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C. 2003. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63: 52-59.
    Pubmed
  5. Hunter WJ, Manter DK. 2009. Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr. Microbiol. 58:493-498.
    Pubmed CrossRef
  6. Chapman J, Weir E, Regan F. 2010. Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf. B Biointerfaces 78: 208-216.
    Pubmed CrossRef
  7. Dumont E, Vanhaecke F, Cornelis R. 2006. Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 385: 1304-1323.
    Pubmed CrossRef
  8. Eszenyi P, Sztrik A, Babka B, Prokisch J. 2011. Elemental, nanosized (100-500 nm) selenium production by probiotic lactic acid bacteria. Int. J. Biosci. Biochem. Bioinforma. 1: 148-152.
    CrossRef
  9. Andreoni V, Luischi MM, Cavalca L, Erba D, Ciappellano S. 2000. Selenite tolerance and accumulation in the Lactobacillus species. Ann. Microbiol. 50: 77-88.
  10. Moore MD, Kaplan S. 1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174: 1505-1514.
    Pubmed KoreaMed CrossRef
  11. Chen L, Pan DD, Zhou J, Jiang YZ. 2005. Protective Effect of seleniumenriched Lactobacillus on CCl-4-induced liver injury in mice and its possible mechanisms. World J. Gastroenterol. 11: 57955800.
    KoreaMed CrossRef
  12. Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, et al. 2009. Accumulation and species distribution of selenium in Seenriched bacterial cells of the Bifidobacterium animals 01. Food Chem. 115: 727-734.
    CrossRef
  13. Pieniz S, Andreazza R, Pereira JQ, de Oliveira Camargo FA, Brandelli A. 2013. Production of selenium-enriched biomass by Enterococcus durans. Biol. Trace Elem. Res. 155: 447-454.
    Pubmed CrossRef
  14. Lamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E. 2011. Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics 11: 2212-2221.
    Pubmed CrossRef
  15. Xia SK, Chen L, Liang JQ. 2007. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 55: 2413-2417.
    Pubmed CrossRef
  16. Kessi J, Hanselmann KW. 2004. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodo- spirillum rubrum and Escherichia coli. J. Biol. Chem. 279: 50662-50669.
    Pubmed CrossRef
  17. Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, et al. 2007. Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl. Environ. Microbiol. 73: 6854-6863.
    Pubmed KoreaMed CrossRef
  18. Huber R, Sacher M, Huber H, Rose D. 2000. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23: 305-314.
    CrossRef
  19. Hidiroglou M, Heaney DP, Jenkins KJ. 1968. Metabolism of inorganic selenium in rumen bacteria. Can. J. Physiol. Pharmacol. 46:229-232.
    Pubmed CrossRef
  20. Shahverdi AR, Shakibaie M, Nazari P. 2011. Basic and practical procedures for microbial synthesis of nanoparticles, pp. 177-195. InMahendra R, Nelson D (eds.), Metal nanoparticles in microbiology. Springer Berlin Heidelberg.
  21. Maurogenakis F, Metaxopoulos J. 1994. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int. J. Food Microbiol. 23: 179-196.
    CrossRef
  22. Ponce De Leon CA, Bayon MM, Paquin C, Caruso JA. 2002. Selenium incorporation into Saccharomyces cerevisiae cells: A study of different incorporation methods. J. Appl. Microbiol. 92: 602610.
    CrossRef
  23. Zhao L, Zhao G, Zhao Z, Chen P, Tong J, Hu X. 2004. Selenium distribution in a Se-enriched mushroom species of the Genus Ganoderma. J. Agric Food Chem. 52: 3954-3959.
    Pubmed CrossRef
  24. Garbisu C, Ishii T, Leighton T, Buchanan B. 1996. Bacterial reduction of selenite to elemental selenium. Chem. Geol. 132: 199-204.
    CrossRef
  25. Chan KW, Khong NMH, Iqbal S, Umar IM, Ismail M. 2012. Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. Int. J. Mol. Sci. 13: 8987-8997.
    Pubmed KoreaMed CrossRef
  26. Nancharaiah YV, Lens PNL. 2015. The ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 79: 61-80.
    Pubmed KoreaMed CrossRef
  27. El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy É, Elhawat N, Prokisch J, et al. 2014. Selenium in soils under climate change, the implication for human health. Environ. Chem. Lett. 13: 1-19.
    CrossRef
  28. Mainville AM, Odongo NE, Bettger WJ, McBride BW, Osborne VR. 2009. Selenium uptake by ruminal microorganisms from organic and inorganic sources in dairy cows. Canadian J. Anim. Sci. 89: 105-110.
    CrossRef
  29. Rother M. 2012. Selenium metabolism in prokaryotes, pp. 457-470. In Hatfield DL, Berry MJ, Gladyshev VN (eds.), Selenium. Springer, New York.
  30. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. 2016. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb. Cell Fact. 15: 109.
    Pubmed KoreaMed CrossRef
  31. Calomme M, Hu J, Van-Den BK, Berghe DV. 1995. Seleno-lactobacillus. Biol. Trace Elem. Res. 47: 379-383.
    Pubmed CrossRef
  32. Chmielewski J, Tyflewska A. 2007. Selenium in microorganisms. pp. 54-68. In Wierzbicka M, Bulska E, Pyrzyńska K, Wysocka I, Zachara BA (eds.), Selenium. The element essential to health and fascinating for researchers. Warsaw, Malamut.
  33. Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, et al. 2013. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol. Cell Proteom. 12:2196-2204.
    Pubmed KoreaMed CrossRef
  34. Xu CL, Wang YZ, Jin ML, Yang XQ. 2009. Preparation, characterisation and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol. 100: 2095-2097.
    Pubmed CrossRef
  35. Palomo M, Gutiérrez AM, Pérez-Conde MC, Cámara C, Madrid Y. 2014. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 164: 371-379.
    Pubmed CrossRef
  36. Losi ME, Frankenberger WT. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079-3084.
    Pubmed KoreaMed
  37. Dungan RS, Frankenberger-Jr WT. 2001. Biotransformations of selenium by Enterobacter cloacae SLD1a-1: formation of dimethylselenide. Biogeochemistry 55: 73-86.
    CrossRef
  38. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, et al. 2010. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 41: 461-466.
    Pubmed KoreaMed CrossRef

Starts of Metrics

Share this article on :

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.