Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Molecular and Cell biology, and Microbial Isolation

Microbiol. Biotechnol. Lett. 2013; 41(1): 26-32

https://doi.org/10.4014/kjmb.1210.10009

Received: October 23, 2012; Accepted: December 4, 2012

부탄올 내성 미생물의 분리, 동정 및 변이주의 개발

Isolation, Identification and Mutant Development of Butanol Tolerance Bacterium

Hyesook Jung 1 and Jinho Lee 1*

Kyungsung University, Department of Food Science & Biotechnology

Butanol-resistant bacteria were isolated from butanol solvent. The cell growth of isolated strains declined with increasing concentrations of butanol, and isolated strain BRS02 displayed more resistance to 12.5 g/L of butanol than other isolated strains. In addition, strain BRS251, which was resistant to even higher concentrations of butanol, was developed by the mutation of BRS02 using UV. BRS251 could grow in LB medium containing up to 17.5 g/L of butanol, 32.5 g/L of propanol, or 6 g/L of pentanol, whereas the control strain Escherichia coli was found to be tolerant to 7.5 g/L of butanol, 20 g/L of propanol, or 2 g/L of pentanol. The isolated BRS02, a Gram(+) bacterium seen to have a cocci form under the microscope, grew in 6.5% NaCl. According to biochemical tests, BRS02 can metabolize and produce acid with D-galactose, D-maltose, D-mannitol, D-mannose, methyl-β-Dglucopyranoside, D-ribose, sucrose, or D-trehalose, as carbon sources. Also, this strain showed resistance to bacitracin, vibriostatic agent O/129, and optochin, alongside positive activities for arginine dihydrolase, α-glucosidase, and urease. The BRS02 strain was identified as Staphylococcus sp. by analyses of the 16S rRNA gene, phylogenetic tree, and biochemical tests.

Keywords: Butanol, tolerance, Staphylococcus, mutagenesis

  1. Alsaker, K. V., C. Paredes, and E. T. Papoutsakis. 2010. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol. Bioeng. 105: 1131-1147.
    Pubmed
  2. Atsumi, S., A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. Y. Chou, T. Hanai, and J. C. Liao. 2007. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10: 305-311.
    Pubmed CrossRef
  3. Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-90.
    Pubmed CrossRef
  4. Blombach, B., T. Riester, S. Wieschalka, C. Ziert, J. W. Youn, V. F. Wendisch, and B. J. Eikmanns. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77: 3300-3310.
    Pubmed KoreaMed CrossRef
  5. Cann, A. F. and J. C. Liao. 2008. Production of 2-methyl-1butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81: 89-98.
    Pubmed CrossRef
  6. Ezeji, T., C. Milne, N. D. Price, and H. P. Blaschek. 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85: 1697-1712.
    Pubmed CrossRef
  7. Fischer, C. R., D. K. Marcuschamer, and G. Stephanopoulos. 2008. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10: 295-304.
    Pubmed CrossRef
  8. Grkovic, S., M. H. Brown, K. M. Hardie, N. Firth, and R. A. Skurray. 2003. Stable low-copy-number Staphylococcus aureus shuttle vectors. Microbiology 149: 785-794.
    Pubmed CrossRef
  9. Knoshaug, E. P. and M. Zhang. 2008. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153:13-20.
    Pubmed CrossRef
  10. Kumar, S., R. Jansen, F. Sasse, and G. Hofle. 2004. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163.
    Pubmed CrossRef
  11. Lee, J. H. 2012. Isolation and genetic characterization of proteaseproducing halophilic bacteria from fermenting anchovy. J. Life Science 22: 167-176.
    CrossRef
  12. Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim, and K. S. Jung. 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228.
    Pubmed CrossRef
  13. Li, J., J. B. Zhao, M. Zhao, Y. L. Yang, W. H. Jiang, and S. Yang. 2010. Screening and characterization of butanol-tolerant micro-organisms. Lett. Appl. Microbiol. 50: 373-379.
    Pubmed CrossRef
  14. Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
    Pubmed CrossRef
  15. Liu, S. and N. Qureshi. 2009. How microbes tolerate ethanol and butanol. New Biotech. 26: 117-121.
    Pubmed CrossRef
  16. Park, H. J. and J. H. Lee. 2012. Transcriptional analysis responding to propanol stress in Escherichia coli. J. Life Science 22: 417-427.
    CrossRef
  17. Qureshi, N. and H. P. Blaschek. 2001. Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 27: 287-291.
    Pubmed CrossRef
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
    Pubmed
  19. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  20. Shen, C. R. and J. C. Liao. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10: 312-320.
    Pubmed CrossRef
  21. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed KoreaMed CrossRef
  22. Xu, M., P. Wang, F. Wang, and X. Xiao. 2005. Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers. Conserv. 14: 3363-3380.
    CrossRef
  23. Yan, Y. and J. C. Liao. 2009. Engineering metabolic systems for production of advanced fuels. J. Ind. Microbiol. Biotechnol. 36: 471-479.
    Pubmed CrossRef

Starts of Metrics

Share this article on :

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.