Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Food, Environment, and Other Topics in Biotechnology

Microbiol. Biotechnol. Lett. 2012; 40(4): 389-395

https://doi.org/10.4014/kjmb.1208.08009

Received: August 20, 2012; Accepted: October 6, 2012

Terminal Restriction Fragment Length Polymorphism 분석을 이용한 Lactobacillus plantarum의 생쥐 장관 정착 평가

Evaluation of the Colonization of Lactobacillus plantarum in Mouse Gut by Terminal Restriction Fragment Length Polymorphism Analysis

Gwangsick Jung 1 and Jong-Hoon Lee 1*

Department of Food Science and Biotechnology, Kyonggi University, Suwon 443-760, Korea

T-RFLP (terminal restriction fragment length polymorphism) analysis, one of the most highly adopted culture-independent microbial community analysis methods, was applied to evaluate the colonization of probiotics in experimental animal gut. Lactic acid bacteria that exhibited cinnamoyl esterase activity were isolated from Korean fermented vegetables and identified by 16S ribosomal RNA sequence analysis. Lactobacillus plantarum KK3, which demonstrated high chlorogenic acid hydrolysis by cinnamoyl esterase activity, and acid/bile salt resistances, was cultured, freezedried, and fed to mice and the microbiota in their feces were monitored by T-RFLP analysis. The T-RF of L. plantarum was detected in the feces of mice after the start of administration and lasted at least 31 days after the initial 7 day feeding. T-RFLP analysis was considered a useful tool to evaluate the gut colonization of probiotic L. plantarum. In order to prove that L. plantarum was from viable cells, we reisolated L. plantarum in the feces using cinnamoyl esterase activity media as the screening step. The colonization of L. plantarum KK3 in the mouse gut was confirmed by this research.

Keywords: T-RFLP, gut, probiotics, Lactobacillus plantarum, chlorogenic acid, cinnamoyl esterase

  1. Alberto, M. R., M. E. Farias, and M. C. M. de Nadra. 2001. Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J. Agric. Food Chem. 49: 4359-4363.
    Pubmed CrossRef
  2. Alberto, M. R., C. Gomez-Cordoves, and M. C. M. de Nadra. 2004. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J. Agric. Food Chem. 52:6465-6469.
    Pubmed CrossRef
  3. Cha, S. D., T. W. Kim, and D. H. Lee. 2010. Isolation and identification of Lactobacillus plantarum CIB 001 with bile salt deconjugation activity from kimchi. Korean J. Microbiol. Biotechnol. 38: 222-226.
  4. Chen, M. and A. Mustapha. 2012. Survival of freeze-dried microcapsules of a-galactosidase producing probiotics in a soy bar matrix. Food Microbiol. 30: 68-73.
    Pubmed CrossRef
  5. Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y.-W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.
    Pubmed CrossRef
  6. Clifford, M. N. 1999. Chlorogenic acids and other cinnamates−nature, occurrence and dietary burden. J. Sci. Food Agric. 79: 362-372.
    CrossRef
  7. Conteau, D., A. L. McCartney, G. R. Gibson, G. Williamson, and C. B. Faulds. 2001. Isolation and characterization of human colonic bacteria able to hydrolyze chlorogenic acid. J. Appl. Microbiol. 90: 873-881.
    CrossRef
  8. Donaghy, J., P. F. Kelly, and A. M. McKay. 1998. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl. Microbiol. Biotechnol. 50: 257-260.
    Pubmed CrossRef
  9. Gonthier, M., M.A. Verny, C. Besson, C. Remesy, and A. Scalbert. 2003. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J. Nutr. 133: 1853-1859.
    Pubmed
  10. Guglielmetti, S., I. De Noni, F. Caracciolo, F. Molinari, C. Parini, and D. Mora. 2008. Bacterial cinnamoyl esterase activity screening for the production of a novel functional food product. Appl. Environ. Microbiol. 74: 1284-1288.
    Pubmed KoreaMed CrossRef
  11. Islam, M. A., C.-H. Yun, Y.-J. Choi, and C.-S. Cho. 2010. Microencapsulation of live probiotic bacteria. J. Microbiol. Biotechnol. 20: 1367-1377.
    Pubmed CrossRef
  12. Kaur, I. P., K. Chopra, and A. Saini. 2002. Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci. 15: 1-9.
    CrossRef
  13. Kim, E.-R., B.-M. Jung, J.-Y. Kim, S.-Y. Kim, H.-K. Jung, H.J. Lee, and H.-N. Chun. 2003. Basic physiological activities of Bifidobacterium infantis Maeil-K9 and Lactobacillus plantarum KCTC3099 selected by anticarcinogenic activities. Korean J. Microbiol. Biotechnol. 31: 348-354.
  14. Kim, S.-Y., K.-S. Shin, and H. Lee. 2004. Screening of lactic acid bacteria with potent adhesive property in human colon using colonic mucin-binding assay. Korean J. Food Sci. Technol. 36: 959-967.
  15. Kobayashi,Y., K. Toyama, and T. Terashima. 1974. Studies on biological characteristics of Lactobacillus. II. Tolerance of the multiple antibiotic resistant strain, L. casei PSR 3002, to artificial digestive fluids. Nihon Saikingaku Zasshi 29:691-697.
    Pubmed CrossRef
  16. Kono, Y., H. Shibata, Y. Kodama, and Y. Sawa. 1995. The suppression of the N-nitrosating reaction by chlorogenic acid. Biochem. J. 312: 947-953.
    Pubmed KoreaMed
  17. Krasaekoopt, W., B. Bhandari, and H. Deeth. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13.
    CrossRef
  18. Lafay, S., A. Gil-Izquierdo, C. Manach, C. Morand, C. Besson, and A. Scalbert. 2006. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr. 136: 1192-1197.
    Pubmed
  19. Lai, K. K., G. L. Lorca, and C. F. Gonzalez. 2009. Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl. Environ. Microbiol. 75: 50185024.
    Pubmed KoreaMed CrossRef
  20. Lane, D. J. 1991. 16S-23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  21. Lee, S.-H., E.-H. Yang, H.-S. Kwon, J.-H. Kang, and B.-H. Kang. 2008. Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36: 121-127.
  22. Lim, S.-M. and D.-S. Im. 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19: 178-186.
    Pubmed CrossRef
  23. Nardini, M., M. D’Aquino, G. Tomassi, V. Gentili, M. Di Felice, and C. Scaccini. 1995. Inhibition of human lowdensity lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med. 19: 541-552.
    CrossRef
  24. Olthof, M. R., P. C. H. Hollman, and M. B. Katan. 2001. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131: 66-71.
    Pubmed
  25. Park, J.-G., S.-Y. Yun, S. Oh, J.-G. Shin, and Y.-J. Baek. 2003. Probiotic characteristics of Lactobacillus acidophilus KY1909 isolated from Korean breast-fed infant. Korean J. Food Sci. Technol. 35: 1244-1247.
  26. Pennacchia, C., D. Ercolini, G. Blaiotta, O. Pepe, G. Mauriello, and F. Villani. 2004. Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci. 67: 309-317.
    Pubmed CrossRef
  27. Shibata, H., Y. Sakamoto, M. Oka, and Y. Kono. 1999. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci. Biotechnol. Biochem. 63: 1295-1297.
    Pubmed CrossRef
  28. Shim, S. and J.-H. Lee. 2008. Evaluation of lactic acid bacterial community in kimchi using terminal restriction fragment length polymorphism analysis. Korean J. Microbiol. Biotechnol. 36: 247-259.
  29. Suzuki, A., D. Kagawa, R. Ochiai, I. Tokimitsu, and I. Saito. 2002. Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens Res. 25: 99-107.
    Pubmed CrossRef
  30. Takeda, H., M. Tsuji, M. Inazu, T. Egashira, and T. Matsumiya. 2002. Rosmarinic acid and caffeic acid produce antidepressivelike effect in the forced swimming test in mice. Eur. J. Pharmacol. 449: 261-267.
    CrossRef
  31. Tanaka, T., T. Kojima, T. Kawamori, A. Wang, M. Suzui, K. Okamoto, and H. Mori. 1993. Inhibition of 4-nitroquinoline1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic, and ferulic acids. Carcinogenesis 14: 1321-1325.
    Pubmed CrossRef
  32. Tsuchiya, T., O. Suzuki, and K. Igarashi. 1996. Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci. Biotechnol. Biochem. 60: 765-768.
    Pubmed CrossRef
  33. Yang, H.-J., K.-I. Jang, C.-H. Kim, Y.-B. Lee, H.-S. Sohn, and K.-Y. Kim. 2004. Screening of Bifidobacterium spp. for the development of infant probiotics. Korean J. Food Sci. Technol. 36: 790-794.

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.