Article Search
닫기

Microbiology and Biotechnology Letters

Research Article(보문)

Environmental Microbiology (EM)  |  Microbial Genomes and Metagenomics

Microbiol. Biotechnol. Lett.

Received: October 20, 2024; Revised: December 26, 2024; Accepted: February 20, 2025

Draft Genome Sequence and Antimicrobial Activity of Amycolatopsis japonica SB7-3 Isolated from Soil in Thailand

Apakorn Songsumanus1, Tuangrat Tunvongvinis2, Nisachon Tedsree3, Wongsakorn Phongsopitanun2, and Somboon Tanasupawat2*

1School of Pharmacy, Eastern Asia University, Pathum Thani 12110, Thailand 2Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand 3Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi 22170, Thailand

Correspondence to :
Somboon Tanasupawat,         Somboon.T@chula.ac.th

This study explores genome analysis and antimicrobial activity of actinobacterium strain SB7-3, isolated from soil. Based on genome sequence analysis, strain SB7-3 was found to be closely related to Amycolatopsis japonica DSM 44213T. The draft genome of strain SB7-3 was 8463214 bp in 19 contigs with a G+C content of 69.10%. The average nucleotide identity-Blast (ANIb) and average nucleotide identity-MUMmer (ANIm) values of strain SB7-3 and A. japonica DSM 44213T were 96.18% and 96.93%, and the digital DNA-DNA hybridization (dDDH) values were 72.90%, respectively. Genomic analysis of strain SB7-3 indicated that the gene encodes enzymes and gene clusters associated with the biosynthesis of bioactive compounds. This strain demonstrated antimicrobial activity against Kocuria rhizophila ATCC 9341, Bacillus subtilis ATCC 6633, and Staphylococcus aureus ATCC 6538.

Keywords: Actinobacteria, Amycolatopsis japonica, antimicrobial activity, genome sequencing

Graphical Abstract


  1. Hamed AA, Mohamed OG, Aboutabl EA, Fathy FI, Fawzy GA, ElShiekh RA, et al. 2023. Identification of antimicrobial metabolites from the Egyptian soil-derived Amycolatopsis keratiniphila revealed by untargeted metabolomics and molecular docking. Metabolites 13: 620.
    Pubmed KoreaMed
  2. Baba IA, Wani ZA, Ali S, Ahmad Z, Mubarak MM. 2024. Actinomycetes-the repertoire of diverse bioactive chemical molecules:From structures to antibiotics. Curr. Top. Med. Chem. doi: 10.2174/0115680266282919240224130345.
    Pubmed
  3. Teo WFA, Lipun K, Srisuk N, Duangmal K. 2021. Amycolatopsis acididurans sp. nov., isolated from peat swamp forest soil in Thailand. J. Antibiot. 74: 199-205.
    Pubmed
  4. Wannawong T, Mhuantong W, Macharoen P, Niemhom N, Sitdhipol J, Chaiyawan N, et al. 2024. Comparative genomics reveals insight into the phylogeny and habitat adaptation of novel Amycolatopsis species, an endophytic actinomycete associated with scab lesions on potato tubers. Front. Plant Sci. 15: 1346574.
    Pubmed KoreaMed
  5. Wang HF, Li XY, Gao R, Xie YG, Xiao M, Li QL, et al. 2020. Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior. Int. J. Syst. Evol. Microbiol. 70:3391-3398.
    Pubmed
  6. Oyuntsetseg B, Lee HB, Kim SB. 2024. Amycolatopsis mongoliensis sp. nov., a novel actinobacterium with antifungal activity isolated from a coal mining site in Mongolia. Int. J. Syst. Evol. Microbiol. 74:006266.
    Pubmed
  7. Oyuntsetseg B, Cho SH, Jeon SJ, Lee HB, Shin KS, Kim IS, et al. 2017. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int. J. Syst. Evol. Microbiol. 67:3387-3392.
    Pubmed
  8. Ningthoujam DS, Devi LJ, Devi PJ, Kshetri P, Tamreihao K, Mukherjee S, et al. 2016. Optimization of keratinase production by Amycolatopsis sp. strain MBRL, 40 from a limestone habitat. J. Bioprocess Biotech. 6: 10000282.
  9. Guan TW, Xia ZF, Tang SK, Wu N, Chen ZJ, Huang Y, et al. 2012. Amycolatopsis salitolerans sp. nov., a filamentous actinomycete isolated from a hypersaline habitat. Int. J. Syst. Evol. Microbiol. 62:23-27.
    Pubmed
  10. Pittenger RC, Brigham RB. 1956. Streptomyces orientalis sp., the source of vancomycin. Antibiot. Chemother. 6: 642-647.
  11. Qian MA, Yang YB, Hu BY, Xu Y, Wang ZH, Li QY, et al. 2022. Baoshanmycin and a new furanone derivative from a soil‐derived actinomycete, Amycolatopsis sp. YNNP 00208. Chem. Biodivers. 19: e202200064.
    Pubmed
  12. Abujunaid H, Khan MS, Said BR, Borade RG, Gonnade VT, Barvkar RT, et al. 2022. Enceleamycins A-C, furo-naphthoquinones from Amycolatopsis sp. MCC0218: isolation, structure elucidation, and antimicrobial activity. J. Nat. Prod. 85: 1267-1273.
    Pubmed
  13. Zerikly M, Challis GL. 2009. Strategies for the discovery of new natural products by genome mining. ChemBioChem. 10: 625633.
    Pubmed
  14. Tedsree N, Tanasupawat S, Sritularak B, Kuncharoen N, Likhitwitayawuid K. 2021. Amycolatopsis dendrobii sp. nov., an endophytic actinomycete isolated from Dendrobium heterocarpum Lindl. Int. J. Syst. Evol. Microbiol. 71: 004902.
    Pubmed
  15. Gandham P, Vadla N, Saji A, Srinivas V, Ruperao P, Selvanayagam S, et al. 2024. Genome assembly, comparative genomics, and identification of genes/pathways underlying plant growth-promoting traits of an actinobacterial strain, Amycolatopsis sp. (BCA696). Sci. Rep. 14: 15934.
    Pubmed KoreaMed
  16. Shirling ET, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16: 313-340.
  17. Deman JM, De Man L, Gupta S. 1986. Texture and microstructure of soybean curd (tofu) as affected by different coagulants. Food Microstruct. 5: 83-89.
  18. Arai T, Tamotsu F, Masa H, Akihiro M, Yuzuru M, Akio S. 1975. Culture media for actinomycetes. Tokyo: The Society for Actinomycetes Japan.
  19. Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematics. In: Methods in Microbiology, Vol. 19. London:Academic Press. pp. 161-207.
  20. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K-I. 1998. Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov., and Kineia. Int. J. Syst. Evol. Microbiol. 48:1245-1255.
    Pubmed
  21. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W, Kirtikara K, et al. 2009. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int. J. Syst. Evol. Microbiol. 59:992-997.
    Pubmed
  22. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  23. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.
    Pubmed
  24. Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20: 406-416.
  25. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    Pubmed
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkina T, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455477.
    Pubmed KoreaMed
  27. Meier-Kolthoff J, Göker M. 2019. TYGS is an automated highthroughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
    Pubmed KoreaMed
  28. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.
    Pubmed KoreaMed
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
    Pubmed KoreaMed
  30. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.
    Pubmed
  31. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.
    Pubmed KoreaMed
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 1-14.
    Pubmed KoreaMed
  33. Goodfellow M, Brown AB, Cai J, Chun J, Collins MD. 1997. Amycolatopsis japonicum sp. nov., an actinomycete producing (S,S)-N,N'ethylenediaminedisuccinic acid. Syst. Appl. Microbiol. 20: 78-84.
  34. Arakawa K, Kodama K, Tatsuno S, Ide S, Kinashi H. 2006. Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei. Antimicrob. Agents Chemother. 50:1946-1952.
    Pubmed KoreaMed
  35. Kaweewan I, Komaki H, Hemmi H, Kodani S. 2017. Isolation and structure determination of new antibacterial peptide curacomycin based on genome mining. Asian J. Org. Chem. 6: 1838-1844.
  36. Duan H, Wang F, Zhang C, Dong Y, Li H, Xiao F, et al. 2023. Elucidation of the late steps during Hexacosalactone A biosynthesis in Streptomyces samsunensis OUCT16-12. Appl. Environ. Microbiol. 89: e01958-22.
    Pubmed KoreaMed
  37. Shao M, Ma J, Li Q, Ju J. 2019. Identification of the anti-infective aborycin biosynthetic gene cluster from deep-sea-derived Streptomyces sp. SCSIO ZS0098 enables production in a heterologous host. Mar. Drugs 17: 127.
    Pubmed KoreaMed
  38. Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA. 2010. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17: 289-293.
    Pubmed KoreaMed
  39. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, et al. 2012. Towards a new tuberculosis drug: pyridomycin-nature's isoniazid. EMBO Mol. Med. 4: 1032-1042.
    Pubmed KoreaMed
  40. Cornejo J, Yevenes K, Avello C, Pokrant E, Maddaleno A, Martin BS, et al. 2018. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens. Molecules 23: 1264.
    Pubmed KoreaMed

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.