Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. 2023. Global impacts of Western diet and its effects on metabolism and health: A narrative review. Nutrients 15: 2749.
Goldstein BJ. 2002. Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90: 3-10.
Kumar S, O’Rahilly S. 2005. Insulin resistance. Insulin action and its disturbances in disease: Chichester.
Kahn S, Hull R, Utzschneider, K. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840846.
Kahn, Steven E. 2001. The importance of β-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab. 86: 4047-4058.
Weyer C, Tataranni PA, Bogardus C, Pratley RE. 2001. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Clin. Diabetol. 2: 167-172.
Tsapas A, Avgerinos I, Karagiannis T, Malandris K, Manolopoulos A, Andreadis P, et al. 2020. Comparative effectiveness of glucoselowering drugs for type 2 diabetes: a systematic review and network meta-analysis. Annal. Int. Med. 173: 278-286.
Waugh N, Cummins E, Royle P, Clar C, Marien M, Richter B, et al. 2010. Newer agents for blood glucose control in type 2 diabetes:systematic review and economic evaluation. Health Technol. Assess. 14: 1-248.
Mastrototaro L, Roden M. 2021. Insulin resistance and insulin sensitizing agents. Metabolism 125: 154892.
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. 2023. The effects of Momordica charantia on type 2 diabetes mellitus and Alzheimer’s disease. Int. J. Mol. Sci. 24: 4643.
Kim YA, Keogh JB, Clifton PM. 2018. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 31: 35-51.
Wang G, Si Q, Yang S, Jiao T, Zhu H, Tian P, et al. 2020. Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners. Food Funct. 11: 5898-5914.
Honda K, Moto M, Uchida N, He F, Hashizume N. 2012. Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. J. Clin. Biochem. Nutr. 51: 96-101.
Moon H, Ha JH, Lee J, Jang H, Kwon D, Cho M, et al. 2023. The effect of fermented Momordica charantia with Leuconostoc mesenteroides MKSR on metabolic complications induced by highfat high-cholesterol diet in C57BL/6 mice. Fermentation 9: 718.
Hartajanie L, Fatimah-Muis S, Heri-Nugroho Hs K, Riwanto I, Sulchan M. 2020. Probiotics fermented bitter melon juice as promising complementary agent for diabetes type 2: study on animal model. J. Nutr. Metab. 2020: 6369873.
Kim J, Yu S, Jeong Y, Kim M. 2023. Enhancement of bioactive properties in Momordica charantia by Leuconostoc fermentation. Fermentation 9: 523.
Lim TJ, Lim S, Yoon JH, Chung MJ. 2021. Effects of multi-species probiotic supplementation on alcohol metabolism in rats. J. Microbiol. 59: 417-425.
Rahman IU, Khan RU, Rahman KU, Bashir M. 2015. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr. J. 14: 13.
Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, et al. 2014. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9: e115922.
Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. 2021. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?. Hepatol. Int. 15: 21-35.
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. 2018. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 75: 3313-3327.
Skyler JS. 2004. Diabetes mellitus: pathogenesis and treatment strategies. J. Med. Chem. 47: 4113-4117.
Singh VP. 2016. An overview on anti diabetic drugs and development. Sci. Technol. J. 4: 113-123.
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. 2022. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 7: 216.
Kazeem MI, Davies TC. 2016. Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. J. Funct. Foods 20: 122-138.
Shih CC, Lin CH, Lin WL. 2008. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res. Clin. Pract. 81: 134-143.
Alam MA, Uddin R, Subhan N, Rahman MM, Jain P, Reza HM. 2015. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J. Lipids 2015:496169.
Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. 2009. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br. J. Nutr. 102: 1703-1708.
Joseph B, Jini D. 2013. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific J. Trop. Dis. 3: 93-102.
Fuangchan A, Sonthisombat P, Seubnukarn T, Chanouan R, Chotchaisuwat P, Sirigulsatien V, et al. 2011. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J. Ethnopharmacol. 134: 422-428.
Salles BIM, Cioffi D, Ferreira SRG. 2020. Probiotics supplementation and insulin resistance: A systematic review. Diabetol. Metab. Syndr. 12: 98.
Yan F, Li N, Shi J, Li H, Yue Y, Jiao W, et al. 2019. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food Funct. 10:5804-5815.
Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, et al. 2010. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nnutr. 104: 1831-1838.
Lee YS, Lee D, Park GS, Ko SH, Park J, Lee YK, et al. 2021. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota. Food Funct. 12: 6363-6373.
Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI. 2018. Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients 10: 643.
Wu T, Zhang Y, Li W, Zhao Y, Long H, Muhindo EM, et al. 2021. Lactobacillus rhamnosus LRa05 ameliorate hyperglycemia through a regulating glucagon-mediated signaling pathway and gut microbiota in type 2 diabetic mice. J. Agric. Food Chem. 69:8797-8806.
Kim SW, Park KY, Kim B, Kim E, Hyun CK. 2013. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 431: 258-263.
Kim J, Yu S, Jeong Y, Kim M. 2023. Enhancement of bioactive properties in Momordica charantia by leuconostoc fermentation. Fermentation 9: 523.
Yousaf S, Hussain A, Rehman S, Aslam MS, Abbas Z. 2016. Hypoglycemic and hypolipidemic effects of Lactobacillus fermentum, fruit extracts of Syzygium cumini and Momordica charantia on diabetes induced mice. Pak. J. Pharm. Sci. 29: 1535-1540.
Su N, Li J, Ye Z, Chen T, Ye M. 2018. Quality properties, flavor and hypoglycemia activity of Kiwifruit-Bitter gourd fermented milks. Food Biosci. 22: 139-145.
Day C, Cartwright T, Provost J, Bailey CJ. 1990. Hypoglycaemic effect of Momordica charantia extracts. Planta Med. 56: 426-429.
Chen Q, Li ET. 2005. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br. J. Nutr. 93: 747-754.
Çakici Í, Hurmoǧlu C, Tunçtan B, Abacioǧlu N, Kanzik Í, Sener B. 1994. Hypoglycaemic effect of Momordica charantia extracts in normoglycaemic or cyproheptadine-induced hyperglycaemic mice. J. Ethnopharmacol. 44: 117-121.
Bano F, Akthar N, Naz H. 2011. Effect of the aqueous extract of Momordica charantia on body weight of rats. J. Basic Appl. Sci. 7:1-5.
Ansari P, Khan JT, Soultana M, Hunter L, Chowdhury S, Priyanka SK, et al. 2024. Insulin secretory actions of polyphenols of Momordica charantia regulate glucose homeostasis in alloxaninduced type 2 diabetic rats. RPS Pharm. Pharmacol. Rep. 3:rqae005.
Tang AN, Rabasa-Lhoret R, Castel H, Wartelle-Bladou C, Gilbert G, Massicotte-Tisluck K, et al. 2015. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care 38: 1339-1346.
Li Y, Xu L, Shen J, Ran J, Zhang Y, Wang M, et al. 2010. Effects of short-term therapy with different insulin secretagogues on glucose metabolism, lipid parameters and oxidative stress in newly diagnosed type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 88:42-47.
Mori Y, Kitahara Y, Miura K, Mine T, Tajima N. 2004. Role of early insulin secretion in postglucose-loading hyperglycaemia and postfat-loading hyperlipidaemia: comparing nateglinide and glibenclamide for acute effects on insulin secretion in OLETF rats. Diabetes Obes Metab. 6: 422-431.
Ai M, Tanaka A, Ogita K, Shimokado K. 2006. Favorable effects of early insulin secretion by nateglinide on postprandial hyperlipidemia in patients with type 2 diabetes. Diabetes Care 29: 11801181.
Kim DJ, Kim TY, Yoon YS, Ryu Y, Chung MJ. 2022. Lactobacillus rhamnosus CBT-LR5 improves lipid metabolism by enhancing Vitamin absorption. Microbiol. Biotechnol. Lett. 50: 477-487.
Shiba, T. 2003. Improvement of insulin resistance by a new insulin secretagogue, nateglinide-analysis based on the homeostasis model. Diabetes Res. Clin. Pract. 62: 87-94.
Sridhar MG, Vinayagamoorthi R, Suyambunathan VA, Bobby Z, Selvaraj N. 2008. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br. J. Nutr. 99: 806-812.
Shih CC, Lin CH, Lin WL, Wu JB. 2009. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J. Ethnopharmacol. 123: 82-90.
Yang SJ, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, et al. 2015. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J. Nutr. Biochem. 26: 234-240.