Article Search

Microbiology and Biotechnology Letters


View PDF

Environmental Microbiology (EM)  |  Biodegradation and Bioremediation

Microbiol. Biotechnol. Lett. 2022; 50(1): 122-125

Received: January 8, 2022; Revised: February 10, 2022; Accepted: February 15, 2022

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

Watcharasorn Kaoplod1 and Pimprapa Chaijak2,3*

1Department of Biology, Faculty of Science, 2Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, 3Microbial Technology for Agriculture, Food and Environment Research Center, Thaksin University 93210, Thailand

Correspondence to :
Pimprapa Chaijak,

Cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts the lignocellulosic material to electricity without combustion. In this study, the cellulose-fed MFC integrated thermophilic bacterium Bacillus sp. WK21 with endoglucanase and exoglucanase activities of 1.25±0.08 U/mL and 0.95±0.02 U/mL for electricity generation at high temperature. The maximal current density of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder were used as substrates. Moreover, the maximal power out of 94.09, 70.56, and 89.30 mW/m3 was reached. This study gained the novelty of using cellulase-producing thermophilic bacteria as a biocatalyst for electricity generation in cellulose-fed MFC.

Keywords: Thermotolerant bacteria, Cellulase, Cellulose, Microbial fuel cell, Electricity generation

Graphical Abstract

  1. Agarwal AK. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion energies. Prog. Energy. Combust. Sci. 33: 233-271.
  2. Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19: 166-172.
  3. Robak K, Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 56:174-187.
    Pubmed KoreaMed
  4. Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulase, and cellulosomes. Curr. Opin. Struct. Biol. 8: 548-557.
  5. Dey N, Vickram S, Thanigaivel S, Subbaiya R, Kim W, Karmegam N, et al. 2022. Nanomaterials for transforming barrier properties of lignocellulosic biomass towards potential applications - A review. Fuel 316: 123444.
  6. Hobdey SE, Donohoe BS, Brunecky R, Himmel ME, Bomble YJ. 2015. Direct microbial conversion of biomass to advanced biofuels, pp. 111-127. 1st Ed. Elsevier B.V., Golden, Colorado.
  7. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. 2009. Thermophilic ethanologenesis: Future prospects for secondgeneration bioethanol production. Trends Biotechnol. 27: 398-405.
  8. Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles:An overview of microorganism from extreme environment. Int. J. Agric. Environ. Biotechnol. 7: 371-380.
  9. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, et al. 2009. Clostridium clariflavum sp. nov. and Clostricium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 59: 1764-1770.
  10. Almatouq A, Babatunde AO, Khajah M, Webster G, Alfodari M. 2020. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J. Water Process Eng. 34: 101140.
  11. Thulasinathan B, Jayabalan T, Arumugam N, Kulanthaisamy MR, Kim P, Govarthanan M, et al. 2022. Wastewater sunstrates in microbial fuel cell system for carbon-neutral bioelectricity generation:An overview. Fuel 317: 123369.
  12. Toczylowska-Maminski R, Szymona K, Madaj H, Wong WZ, Bala A, Brutkowski W, et al. 2015. Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Appl. Energy 160: 88-93.
  13. Toczylowska-Maminski R, Szymona K, Krol P, Gliniewicz K, PielechPrzybylska K, Kloch M, et al. 2018. Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11: 124.
  14. Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res. Notes 11: 445.
    Pubmed KoreaMed
  15. Junior FLS, Dias ACF, Fasanella CC, Taketani RG, Lima AOS, Melo IS, et al. 2013. Endo- and exoglucanase activities in bacteria from mangrove sediment. Braz. J. Microbiol. 44: 969-976.
    Pubmed KoreaMed
  16. Parkash A, Aziz S, Soomro SA. 2015. Impact of salt concentration on electricity generation using hostel sludge based dual chambered microbial fuel cell. J. Bioprocess. Biotech. 5: 1000252.
  17. You S, Zhao Q, Zhang J, Jiang J, Zhao S. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sourc. 162: 1409-1415.
  18. Kazeem MO, Shah UKM, Baharuddin AS, Rahman AA. 2017. Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic Bacillus licheniformis 2D55. Appl. Biochem. Biotechnol. 182: 1318-1340.
    Pubmed KoreaMed
  19. Padiha IQM, Carvalho LCT, Dias PVS, Grisi TCSL, Honorato da Silva FL, Santos SFM, et al. 2015. Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz. J. Chem. Eng. 32: 35-42.
  20. Meng F, Ma L, Ji S, Yang W, Cao B. 2014. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett. Appl. Microbiol. 59: 306-312.
  21. Hajiabadi S, Mashreghi M, Bahrami AR, Ghazvini K, Matin MM. 2020. Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity. Biocell 44: 63-71.
  22. Ganesan M, Mathivani Vinayakamoorthy R, Thankappan S, Muniraj I, Uthandi S. 2020. Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. Biotechnol. Biofuels 13: 124.
    Pubmed KoreaMed
  23. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, et al. 2017. Highthroughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol. Lett. 39: 123-131.
  24. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673-3678.
    Pubmed KoreaMed
  25. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407.
  26. Ishii S, Shimoyama T, Hotta Y, Watanabe K. 2008. Characterization of filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol. 8: 6.
    Pubmed KoreaMed
  27. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, et al. 2009. Bioaugmentation for electricity from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43: 6088-6093.

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.