Article Search
닫기

Microbiology and Biotechnology Letters

총설(Review)

View PDF

Molecular and Cellular Microbiology (MCM)  |  Microbial Genetics, Physiology and Metabolism

Microbiol. Biotechnol. Lett. 2021; 49(4): 478-484

https://doi.org/10.48022/mbl.2110.10010

Received: October 27, 2021; Revised: November 30, 2021; Accepted: December 15, 2021

How Do Bacteria Maximize Their Cellular Assets?

Juhyun Kim*

School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea

Correspondence to :
Juhyun Kim,      juhyunkim@knu.ac.kr

Cellular resources including transcriptional and translational machineries in bacteria are limited, yet microorganisms depend upon them to maximize cellular fitness. Bacteria have evolved strategies for using resources economically. Regulatory networks for the gene expression system enable the cell to synthesize proteins only when necessary. At the same time, regulatory interactions enable the cell to limit losses when the system cannot make a cellular profit due to fake substrates. Also, the architecture of the gene expression flow can be advantageous for clustering functionally related products, thus resulting in effective interactions among molecules. In addition, cellular systems modulate the investment of proteomes, depending upon nutrient qualities, and fast-growing cells spend more resources on the synthesis of ribosomes, whereas nonribosomal proteins are synthesized in nutrient-limited conditions. A deeper understanding of cellular mechanisms underlying the optimal allocation of cellular resources can be used for biotechnological purposes, such as designing complex genetic circuits and constructing microbial cell factories

Keywords: Resource allocation, growth law, regulatory network, cellular economy

Graphical Abstract


  1. Klumpp S, Scott M, Pedersen S, Hwa T. 2013. Molecular crowding limits translation and cell growth. Proc. Natl. Acad. Sci. USA 110:16754-16759.
    Pubmed KoreaMed
  2. Klumpp S, Zhang Z, Hwa T. 2009. Growth rate-dependent global effects on gene expression in bacteria. Cell 139: 1366-1375.
    Pubmed KoreaMed
  3. Scott M, Klumpp S, Mateescu EM, Hwa T. 2014. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 10: 747.
    Pubmed KoreaMed
  4. Korem Kohanim Y, Levi D, Jona G, Towbin BD, Bren A, Alon U. 2018. A bacterial growth law out of steady state. Cell Rep. 23:2891-2900.
    Pubmed
  5. Kim J, Darlington APS, Bates DG, Jimenez JI. 2021. The interplay between growth rate and nutrient quality defines gene expression capacity. bioRxiv. 2021.2004.2002.438188.
  6. Kim J, Darlington A, Salvador M, Utrilla J, Jimenez JI. 2019. Trade-offs between gene expression, growth and phenotypic diversity in microbial populations. Curr. Opin. Biotechnol. 62: 29-37.
    Pubmed KoreaMed
  7. Sneppen K, Krishna S, Semsey S. 2010. Simplified models of biological networks. Annu. Rev. Biophys. 39: 43-59.
    Pubmed
  8. Lozada-Chavez I, Janga SC, Collado-Vides J. 2006. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res. 34: 3434-3445.
    Pubmed KoreaMed
  9. Shis DL, Matthew R, Bennett, Igoshin OA. 2018. Dynamics of bacterial gene regulatory networks. Ann. Rev. Biophys. 47: 447-467.
    Pubmed
  10. Vind J, Sorensen MA, Rasmussen MD, Pedersen S. 1993. Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. J. Mol. Biol. 231: 678-688.
    Pubmed
  11. Shachrai I, Zaslaver A, Alon U, Dekel E. 2010. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol. Cell 38: 758-767.
    Pubmed
  12. O'Brien EJ, Utrilla J, Palsson BO. 2016. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput. Biol. 12: e1004998.
    Pubmed KoreaMed
  13. Mori M, Schink S, Erickson DW, Gerland U, Hwa T. 2017. Quantifying the benefit of a proteome reserve in fluctuating environments. Nat. Commun. 8: 1225.
    Pubmed KoreaMed
  14. Kotte O, Volkmer B, Radzikowski JL, Heinemann M. 2014. Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol. Syst. Biol. 10: 736.
    Pubmed KoreaMed
  15. van Boxtel C, van Heerden JH, Nordholt N, Schmidt P, Bruggeman FJ. 2017. Taking chances and making mistakes: non-genetic phe notypic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface 14: 20170241.
    Pubmed KoreaMed
  16. Martins BM, Locke JC. 2015. Microbial individuality: how singlecell heterogeneity enables population level strategies. Curr. Opin. Microbiol. 24: 104-112.
    Pubmed
  17. Mackey MC, Santillan M, Yildirim N. 2004. Modeling operon dynamics: the tryptophan and lactose operons as paradigms. C R Biol. 327: 211-224.
    Pubmed
  18. Lawrence JG. 2002. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110: 407-413.
  19. Osbourn AE, Field B. 2009. Operons. Cell. Mol. Life Sci : CMLS 66:3755-3775.
    Pubmed KoreaMed
  20. Merino E, Jensen RA, Yanofsky C. 2008. Evolution of bacterial trp operons and their regulation. Curr. Opin. Microbiol. 11: 78-86.
    Pubmed KoreaMed
  21. Assinder SJ, Williams PA. 1990. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol. 31: 1-69.
  22. Marques S, Manzanera M, Gonzalez-Perez MM, Ruiz R, Ramos JL. 1999. Biodegradation, plasmid-encoded catabolic pathways, host factors and cell metabolism. Environ. Microbiol. 1: 103-104.
    Pubmed
  23. Worsey MJ, Williams PA. 1975. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124: 7-13.
    Pubmed KoreaMed
  24. Bertoni G, Marques S, de Lorenzo V. 1998. Activation of the tolueneresponsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol. Microbiol. 27: 651-659.
    Pubmed
  25. Marques S, Gallegos MT, Manzanera M, Holtel A, Timmis KN, Ramos JL. 1998. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J. Bacteriol. 180:2889-2894.
    Pubmed KoreaMed
  26. Ramos JL, Marques S, Timmis KN. 1997. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ann. Rev. Microbiol. 51: 341-373.
    Pubmed
  27. Gallegos MT, Marques S, Ramos JL. 1996. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54dependent tandem promoters according to the compound used for growth. J. Bacteriol. 178: 2356-2361.
    Pubmed KoreaMed
  28. Kim J, Silva-Rocha R, de Lorenzo V. 2021. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity. Int. Microbiol. 24: 507519.
    Pubmed
  29. Kim J, Perez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V. 2016. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ. Microbiol. 18: 3327-3341.
    Pubmed
  30. Silva-Rocha Randde Lorenzo V. 2012. Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene. Mol. Microbiol. 86: 199-211.
    Pubmed
  31. Vitale E, Milani A, Renzi F, Galli E, Rescalli E, de Lorenzo V, et al. 2008. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA. Mol. Microbiol. 69: 698713.
    Pubmed
  32. Zimmerman SB, Trach SO. 1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222: 599-620.
  33. Kim J, Goni-Moreno A, de Lorenzo V. 2021. Subcellular architecture of the xyl gene expression flow of the TOL catabolic plasmid of Pseudomonas putida mt-2. mBio. 12: e03685-20.
    Pubmed KoreaMed
  34. Kim J, Goni-Moreno A, Calles B, de Lorenzo V. 2019. Spatial organization of the gene expression hardware in Pseudomonas putida. Environ. Microbiol. 21: 1645-1658.
    Pubmed
  35. Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, et al. 2014. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32: 10111018.
    Pubmed KoreaMed
  36. dos Santos VT, Bisson-Filho AW, Gueiros-Filho FJ. 2012. DivIVAmediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. J. Bacteriol. 194: 3661-3669.
    Pubmed KoreaMed
  37. Dugar G, Svensson SL, Bischler T, Waldchen S, Reinhardt R, Sauer M, et al. 2016. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat. Commun. 7: 11667.
    Pubmed KoreaMed
  38. Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X. 2016. Spatial organization shapes the turnover of a bacterial transcriptome. ELife 5: e13065.
    Pubmed KoreaMed
  39. Kannaiah S, Livny J, Amster-Choder O. 2019. Spatiotemporal organization of the E. coli transcriptome: Translation independence and engagement in regulation. Mol. Cell 76: 574-589 e577.
    Pubmed
  40. Fazal FM, Chang HY. 2019. Subcellular spatial transcriptomes:Emerging frontier for understanding gene regulation. Cold Spring Harb Symp. Quant. Biol. 84: 31-45.
    Pubmed KoreaMed
  41. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, AmsterChoder O. 2011. Translation-independent localization of mRNA in E. coli. Science 331: 1081-1084.
    Pubmed
  42. Gyorgy A, Jimenez JI, Yazbek J, Huang HH, Chung H, Weiss R, et al. 2015. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109: 639-646.
    Pubmed KoreaMed
  43. Carbonell-Ballestero M, Garcia-Ramallo E, Montanez R, RodriguezCaso C, Macia J. 2016. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law. Nucleic Acids Res. 44: 496-507.
    Pubmed KoreaMed
  44. Shopera T, He L, Oyetunde T, Tang YJ, Moon TS. 2017. Decoupling resource-coupled gene expression in living cells. ACS Synth. Biol. 6: 1596-1604.
    Pubmed
  45. Borkowski O, Bricio C, Murgiano M, Rothschild-Mancinelli B, Stan GB, Ellis T. 2018. Cell-free prediction of protein expression costs for growing cells. Nat. Commun. 9: 1457.
    Pubmed KoreaMed
  46. Ceroni F, Algar R, Stan GB, Ellis T. 2015. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12: 415-418.
    Pubmed
  47. Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN, et al. 2018. Burden-driven feedback control of gene expression. Nat. Methods 15: 387-393.
    Pubmed
  48. Darlington APS, Kim J, Jimenez JI, Bates DG. 2018. Engineering translational resource allocation controllers: Mechanistic models, design guidelines, and potential biological implementations. ACS Synth. Biol. 7: 2485-2496.
    Pubmed
  49. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330: 1099-1102.
    Pubmed
  50. Scott M, Hwa T. 2011. Bacterial growth laws and their applications. Curr. Opin. Biotechnol. 22: 559-565.
    Pubmed KoreaMed
  51. Baracchini E, Bremer H. 1991. Control of rRNA synthesis in Escherichia coli at increased rrn gene dosage. Role of guanosine tetraphosphate and ribosome feedback. J. Biol. Chem. 266: 1175311760.
  52. Stevenson BS, Schmidt TM. 2004. Life history implications of rRNA gene copy number in Escherichia coli. Appl. Environ. Microbiol. 70: 6670-6677.
    Pubmed KoreaMed
  53. Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. 2015. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids Res. 43: 1783-1794.
    Pubmed KoreaMed
  54. Corrigan RM, Bellows LE, Wood A, Grundling A. 2016. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 113: E1710-1719.
    Pubmed KoreaMed
  55. Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL. 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc. Natl. Acad. Sci. USA 108: 5712-5717.
    Pubmed KoreaMed
  56. Magnusson LU, Farewell A, Nystrom T. 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13: 236-242.
    Pubmed
  57. Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, et al. 2010. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat. Struc. Mol. Biol. 17: 1188-1194.
    Pubmed
  58. Zhu M, Dai X. 2019. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res. 47: 4684-4693.
    Pubmed KoreaMed
  59. Ross W, Sanchez-Vazquez P, Chen AY, Lee JH, Burgos HL, Gourse RL. 2016. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol. Cell 62: 811-823.
    Pubmed KoreaMed

Starts of Metrics

Share this article on :

  • mail

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.