Article Search
닫기

Microbiology and Biotechnology Letters

총설(Review)

View PDF

Molecular and Cellular Microbiology (MCM)  |  Host-Microbe Interaction and Pathogenesis

Microbiol. Biotechnol. Lett. 2021; 49(4): 467-477

https://doi.org/10.48022/mbl.2107.07008

Received: July 18, 2021; Revised: November 19, 2021; Accepted: November 19, 2021

Exploring Staphylococcus aureus Virulence Factors; Special Emphasis on Staphyloxanthin

Fatma Al-zahraa A. Yehia*, Nehal Yousef, and Momen Askoura*

Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, 44519, Egypt

Correspondence to :
Fatma Al-zahraa A.Yehia,      zahra.ahmed.yehia@gmail.com
Momen Askoura,                    momenaskora@yahoo.com

Staphylococcus aureus is a well-known pathogen that can cause diseases in humans. It can cause both mild superficial skin infections and serious deep tissue infections, including pneumonia, osteomyelitis, and infective endocarditis. To establish host infection, S. aureus manages a complex regulatory network to control virulence factor production in both temporal and host locations. Among these virulence factors, staphyloxanthin, a carotenoid pigment, has been shown to play a leading role in S. aureus pathogenesis. In addition, staphyloxanthin provides integrity to the bacterial cell membrane and limits host oxidative defense mechanisms. The overwhelming rise of Staphylococcus resistance to routinely used antibiotics has necessitated the development of novel anti-virulence agents to overcome this resistance. This review presents an overview of the chief virulence determinants in S. aureus. More attention will be paid to staphyloxanthin, which could be a possible target for anti-virulence agents.

Keywords: Staphylococcus aureus, virulence, anti-virulence therapy, staphyloxanthin

Graphical Abstract


  1. Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Götz F. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 280: 32493-32498.
    Pubmed
  2. Aires de Sousa M, de Lencastre H. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40: 101-111.
  3. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect. Control Hosp. Epidemiol. 24:362-386.
    Pubmed
  4. Miller LG, Diep BA. 2008. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of communityassociated methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46: 752-760.
    Pubmed
  5. Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532.
    Pubmed
  6. Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et al. 2005. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med. 352: 468-475.
    Pubmed
  7. Gould D, Chamberlaine A. 1995. Staphylococcus aureus: a review of the literature. J. Clin. Nurs. 4: 5-12.
    Pubmed
  8. Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins 8: 72.
    Pubmed KoreaMed
  9. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K-I, Oguchi A, et al. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819-1827.
  10. Lowy FD. 1998. Staphylococcus aureus infections. New Engl. J. Med. 339: 520-532.
    Pubmed
  11. Liñares J. 2001. The VISA/GISA problem: therapeutic implications. Clin. Microbiol. Infect. 7 Suppl 4: 8-15.
    Pubmed
  12. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. 2013. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J. Antimicrob. Chemother. 68: 1455-1464.
    Pubmed
  13. Foster TJ. 2004. The Staphylococcus aureus "superbug". J. Clin. Investig. 114: 1693-1696.
    KoreaMed
  14. Novick RP. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 14291449.
    Pubmed
  15. Zhu Y. 2010. Staphylococcus aureus virulence factors synthesis is controlled by central metabolism. Dissertations & Theses in Veterinary and Biomedical Science. 5.
  16. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12: 49-62.
    Pubmed KoreaMed
  17. Bien J, Sokolova O, Bozko P. 2011. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathog. 2011: 601905.
    Pubmed KoreaMed
  18. Sabat A, Melles DC, Martirosian G, Grundmann H, van Belkum A, Hryniewicz W. 2006. Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J. Clin. Microbiol. 44:1135-1138.
    Pubmed KoreaMed
  19. George NP, Wei Q, Shin PK, Konstantopoulos K, Ross JM. 2006. Staphylococcus aureus adhesion via Spa, ClfA, and SdrCDE to immobilized platelets demonstrates shear-dependent behavior. Arterioscler. Thromb. Vasc. Biol. 26: 2394-2400.
    Pubmed
  20. Clarke SR, Andre G, Walsh EJ, Dufrêne YF, Foster TJ, Foster SJ. 2009. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect. Immun. 77: 2408-2416.
    Pubmed KoreaMed
  21. Clarke SR, Foster SJ. 2008. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect. Immun. 76: 1518-1526.
    Pubmed KoreaMed
  22. Gómez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, et al. 2004. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat. Med. 10:842-848.
    Pubmed
  23. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR, et al. 2010. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol. 192: 5663-5673.
    Pubmed KoreaMed
  24. Weinstein L, Fields BN. 1982. Seminars in infectious disease, 2: 256-303. Ed. Stratton Intercontinental Medical Book Corporation.
  25. Nilsson I-M, Lee JC, Bremell T, Ryden C, Tarkowski A. 1997. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65: 4216-4221.
    Pubmed KoreaMed
  26. Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, et al. 2013. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum. Vaccin. Immunother. 9: 480-487.
    Pubmed KoreaMed
  27. O'Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17: 218-234.
    Pubmed KoreaMed
  28. Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143: 2395-2405.
    Pubmed
  29. Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Ann. Rev. Microbiol. 57: 677-701.
    Pubmed
  30. Kiedrowski MR, Horswill AR. 2011. New approaches for treating staphylococcal biofilm infections. Annal. NY Acad. Sci. 1241:104-121.
    Pubmed
  31. Fitzpatrick F, Humphreys H, O'Gara JP. 2005. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 43: 1973-1976.
    Pubmed KoreaMed
  32. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167-193.
    Pubmed KoreaMed
  33. Scherr TD, Heim CE, Morrison JM, Kielian T. 2014. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front. Immunol. 5: 37.
    Pubmed KoreaMed
  34. De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. 2013. Bacterial biofilm development as a multicellular adaptation:antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16: 580-589.
    Pubmed
  35. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms:a common cause of persistent infections. Science 284:1318-1322.
    Pubmed
  36. Yarets Y, Rubanov L, Novikova I, Shevchenko N. 2013. The biofilm-forming capacity of Staphylococcus aureus from chronic wounds can be useful for determining Wound-Bed Preparation methods. EWMA J. 13: 7-14.
  37. Otto M. 2008. Staphylococcal biofilms. Curr. Topics Microbiol. Immunol. 322: 207-228.
    Pubmed KoreaMed
  38. Mirani ZA, Aziz M, Khan MN, Lal I, ul Hassan N, Khan SI. 2013. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microb. Pathog. 61: 66-72.
    Pubmed
  39. Rooijakkers SH, van Kessel KP, van Strijp JA. 2005. Staphylococcal innate immune evasion. Trends Microbiol. 13: 596-601.
    Pubmed
  40. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. 2005. Anti-opsonic properties of staphylokinase. Microb. Infect. 7: 476-484.
    Pubmed
  41. Lee LYL, Höök M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, et al. 2004. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190: 571-579.
    Pubmed
  42. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199: 687-695.
    Pubmed KoreaMed
  43. Rooijakkers SH, Ruyken M, Van Roon J, Van Kessel KP, Van Strijp JA, Van Wamel WJ. 2006. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 8: 1282-1293.
    Pubmed
  44. Sonnen AF, Henneke P. 2013. Role of pore-forming toxins in neonatal sepsis. Clin. Dev. Immunol. 2013: 608456.
    Pubmed KoreaMed
  45. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, et al. 2010. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 5: e11071.
    Pubmed KoreaMed
  46. Vandenesch F, Lina G, Henry T. 2012. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides:a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2: 12.
    Pubmed KoreaMed
  47. Lin Y-C, Peterson ML. 2010. New insights into the prevention of staphylococcal infections and toxic shock syndrome. Exp. Rev. Clin. Pharmacol. 3: 753-767.
    Pubmed KoreaMed
  48. Chowdhury T. 2014. Virtual screening of compounds derived from Garcinia pedunculata as an inhibitor of gamma hemolysin component A of Staphylo-coccus aureus. Bangladesh J. Pharmacol. 9: 67-71.
  49. Voyich JM, Otto M, Mathema B, Braughton KR, Whitney AR, Welty D, et al. 2006. Is Panton‐Valentine leukocidin the major virulence determinant in community‐associated methicillinresistant Staphylococcus aureus disease? J. Infect. Dis. 194:1761-1770.
    Pubmed
  50. Genestier A-L, Michallet M-C, Prévost G, Bellot G, Chalabreysse L, Peyrol S, et al. 2005. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Investig. 115:3117-3127.
    Pubmed KoreaMed
  51. McKevitt AI, Bjornson GL, Mauracher CA, Scheifele DW. 1990. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect. Immun. 58: 1473-1475.
    Pubmed KoreaMed
  52. Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13: 1510-1514.
    Pubmed
  53. Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79: 886-895.
    Pubmed KoreaMed
  54. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. 2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8:e1002744.
    Pubmed KoreaMed
  55. Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, et al. 2011. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121: 238-248.
    Pubmed KoreaMed
  56. Bukowski M, Wladyka B, Dubin G. 2010. Exfoliative toxins of Staphylococcus aureus. Toxins 2: 1148-1165.
    Pubmed KoreaMed
  57. Holten KB, Onusko EM. 2000. Appropriate prescribing of oral beta-lactam antibiotics. Am. Fam. Physician 62: 611-620.
  58. Lobanovska M, Pilla G. 2017. Focus: Drug development: Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale J. Biol. Med. 90: 135.
  59. Hennekinne JA, De Buyser ML, Dragacci S. 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815-836.
    Pubmed
  60. Lin C-F, Chen C-L, Huang W-C, Cheng Y-L, Hsieh C-Y, Wang C-Y, et al. 2010. Different types of cell death induced by enterotoxins. Toxins 2: 2158-2176.
    Pubmed KoreaMed
  61. Balaban N, Rasooly A. 2000. Staphylococcal enterotoxins. Int. J. Food Microbiol. 61: 1-10.
  62. Rosenbach AJF. 1884. Mikro-organismen bei den Wund-infectionskrankheiten des Menschen, Ed. JF Bergmann.
  63. Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, et al. 2004. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186: 4085-4099.
    Pubmed KoreaMed
  64. Ribeiro D, Freitas M, Silva AM, Carvalho F, Fernandes E. 2018. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 120: 681-699.
    Pubmed
  65. Siems W, Wiswedel I, Salerno C, Crifò C, Augustin W, Schild L, et al. 2005. β-Carotene breakdown products may impair mitochondrial functions—potential side effects of high-dose βcarotene supplementation. J. Nutr. Biochem. 16: 385-397.
    Pubmed
  66. Fernandes A, Nascimento TC, Jacob-Lopes E, De Rosso V, Zepka L. 2018. Introductory Chapter: Carotenoids - A brief overview on its structure, biosynthesis, synthesis, and applications, 1: 1-16, Ed.
  67. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215.
    Pubmed KoreaMed
  68. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Bacteriol. 176: 7719-7726.
    Pubmed KoreaMed
  69. Clauditz A, Resch A, Wieland K-P, Peschel A, Götz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953.
    Pubmed KoreaMed
  70. Beard-Pegler MA, Stubbs E, Vickery AM. 1988. Observations on the resistance to drying of staphylococcal strains. J. Med. Microbiol. 26: 251-255.
    Pubmed
  71. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820832.
    Pubmed
  72. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215.
    Pubmed KoreaMed
  73. Liu C-I, Liu GY, Song Y, Yin F, Hensler ME, Jeng W-Y, et al. 2008. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319: 1391-1394.
    Pubmed KoreaMed
  74. Popov I, Kaprel'iants A, Ostrovskiĭ D, Ignatov V. 1976. Study of the membranes of pigment-free mutant of Staphylococcus aureus. Biokhimiia (Moscow, Russia). 41: 1116-1120.
  75. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, et al. 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 55: 526-531.
    Pubmed KoreaMed
  76. Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. 2000. In vitro resistance of Staphylococcus aureus to thrombininduced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun. 68:3548-3553.
    Pubmed KoreaMed
  77. Mitchell G, Fugère A, Gaudreau KP, Brouillette E, Frost EH, Cantin AM, et al. 2013. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS One 8: e65018.
    Pubmed KoreaMed
  78. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33: 5967-5982.
    Pubmed
  79. Marshall JH, Wilmoth GJ. 1981. Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J. Bacteriol. 147: 914-919.
    Pubmed KoreaMed
  80. Palma M, Cheung AL. 2001. Sigma(B) activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect. Immun. 69: 7858-7865.
    Pubmed KoreaMed
  81. Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor is sigma B Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180:4814-4820.
    Pubmed KoreaMed
  82. Giachino P, Engelmann S, Bischoff M. 2001. Sigma B activity depends on RsbU in Staphylococcus aureu. J. Bacteriol. 183:1843-1852.
    Pubmed KoreaMed
  83. Liu Y, Wu N, Dong J, Gao Y, Zhang X, Shao N, et al. 2010. SsrA (tmRNA) acts as an antisense RNA to regulate Staphylococcus aureus pigment synthesis by base pairing with crtMN mRNA. FEBS Lett. 584: 4325-4329.
    Pubmed
  84. Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R, Gatto C, et al. 2016. Growth-environment dependent modulation of Staphylococcus aureus branched-chain to straight-chain fatty acid ratio and incorporation of unsaturated fatty acids. PLoS One 11: e0165300.
    Pubmed KoreaMed
  85. Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 48144820.
    Pubmed KoreaMed
  86. van Schaik W, Abee T. 2005. The role of σB in the stress response of Gram-positive bacteria - targets for food preservation and safety. Curr. Opin. Biotechnol. 16: 218-224.
    Pubmed
  87. Katzif S, Lee E-H, Law AB, Tzeng Y-L, Shafer WM. 2005. CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. J. Bacteriol. 187: 8181-8184.
    Pubmed KoreaMed
  88. Hall JW, Yang J, Guo H, Ji Y. 2017. The Staphylococcus aureus AirSR two-component system mediates reactive oxygen species resistance via transcriptional regulation of staphyloxanthin production. Infect. Immun. 85: e00838-00816.
  89. Lan L, Cheng A, Dunman PM, Missiakas D, He C. 2010. Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J. Bacteriol. 192: 3068-3077.
    Pubmed KoreaMed
  90. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. 2013. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4: e00537-00512.
  91. Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, et al. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J. Bacteriol. 188: 6739-6756.
    Pubmed KoreaMed
  92. Hu B, Mayer MP, Tomita M. 2006. Modeling Hsp70-mediated protein folding. Biophys. J. 91: 496-507.
    Pubmed KoreaMed
  93. Craig EA, Schlesinger MJ. 1985. The heat shock respons. Critc. Rev. Biochem. 18: 239-280.
    Pubmed
  94. Al Refaii A, Alix JH. 2009. Ribosome biogenesis is temperature‐ dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71: 748-762.
    Pubmed
  95. Singh VK, Sirobhushanam S, Ring RP, Singh S, Gatto C, Wilkinson BJ. 2018. Roles of pyruvate dehydrogenase and branchedchain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus. J. Med. Microbiol. 67: 570.
    Pubmed KoreaMed
  96. Kakutani Y. 1967. Detection of some isoprenoids and the influence of diphenylamine on the biosynthesis of isoprenoid by Sporobolomyces shibatanus. J. Biochem. 61: 193-198.
    Pubmed
  97. Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615.
    Pubmed KoreaMed
  98. No JH, de Macedo Dossin F, Zhang Y, Liu Y-L, Zhu W, Feng X, et al. 2012. Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc. Natl. Acad. Sci. USA 109: 4058-4063.
    Pubmed KoreaMed
  99. Song Y, Liu CI, Lin FY, No JH, Hensler M, Liu YL, et al. 2009. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem. 52: 3869-3880.
    Pubmed KoreaMed
  100. Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615.
    Pubmed KoreaMed
  101. Chen F, Di H, Wang Y, Cao Q, Xu B, Zhang X, et al. 2016. Smallmolecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12: 174-179.
    Pubmed
  102. Wang Y, Chen F, Di H, Xu Y, Xiao Q, Wang X, et al. 2016. Discovery of Potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. J. Med. Chem. 59: 3215-3230.
    Pubmed
  103. Cushnie TP, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356.
    Pubmed KoreaMed
  104. Lee J-H, Park J-H, Cho MH, Lee J. 2012. Flavone reduces the production of virulence factors, staphyloxanthin and αHemolysin, in Staphylococcus aureus. Curr. Microbiol. 65: 726-732.
    Pubmed
  105. Limsuwan S, Voravuthikunchai SP. 2008. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 53: 429-436.
    Pubmed
  106. Saising J, Hiranrat A, Mahabusarakam W, Ongsakul M, Voravuthikunchai SP. 2008. Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural antibiotic for Staphylococcal Cutaneous infections. J. Health Sci. 54: 589-595.
  107. Leejae S, Hasap L, Voravuthikunchai SP. 2013. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J. Med. Microbiol. 62: 421-428.
    Pubmed
  108. Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. 2012. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 35:48-53.
    Pubmed
  109. Fukuda T, Tomoda H. 2013. Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus. J. Antibiot. 66: 355-357.
    Pubmed
  110. Fukuda T, Shinkai M, Sasaki E, Nagai K, Kurihara Y, Kanamoto A, et al. 2015. Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot. 68: 620-627.
    Pubmed
  111. Fukuda T, Shimoyama K, Nagamitsu T, Tomoda H. 2014. Synthesis and biological activity of Citridone A and its derivatives. J. Antibiot. 67: 445-450.
    Pubmed

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.