Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Fermentation Microbiology (FM)  |  Applied Microbiology

Microbiol. Biotechnol. Lett. 2022; 50(1): 81-88

https://doi.org/10.48022/mbl.2109.09017

Received: September 30, 2021; Revised: October 8, 2021; Accepted: October 12, 2021

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

Eda Buyukduman1, Hatice Ebrar Kirtil1, and Banu Metin1,2*

1Department of Food Engineering, Faculty of Engineering and Natural Sciences, 2Food and Agricultural Research Center, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey

Correspondence to :
Banu Metin,      banu.metin@izu.edu.tr

Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

Keywords: Acetic acid bacteria (AAB), Malatya apricot, bacterial cellulose, Komagataeibacter, Gluconobacter cerinus

Graphical Abstract


  1. Gomes RJ, Borges M de F, Rosa M de F, Castro-G?mez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry:Systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
    Pubmed KoreaMed
  2. Yamada Y. 2016. Systematics of acetic acid bacteria, pp. 1-50. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds.), Acetic Acid Bacteria: Ecology and Physiology, Springer, Tokyo, Japan.
  3. De Roos J, De Vuyst L. 2018. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 49: 115-119.
    Pubmed
  4. Gullo M, La China S, Falcone PM, Giudici P. 2018. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102: 6885-6898.
    Pubmed
  5. Hasdemir M. 2020. Product Report Apricot, pp. 1- 47. Ministry of Agriculture and Forestry, Institute of Agricultural Economics and Policy Development, Ankara.
  6. Akın EB, Karabulut I, Topcu A. 2008. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 107: 939-948.
  7. Hidalgo C, Mateo E, Mas A, Torija MJ. 2012. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 30: 98-104.
    Pubmed
  8. Valera MJ, Laich F, Gonz?lez SS, Torija MJ, Mateo E, Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112.
    Pubmed
  9. Camu N, Gonz?lez A, De Winter T, Van Schoor A, De Bruyne K, Vandamme P, et al. 2008. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 86-98.
    Pubmed KoreaMed
  10. Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult. Collect. 19: 91-99.
  11. Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int. J. Food Microbiol. 106: 209-212.
    Pubmed
  12. Versalovic J, Schneider M, Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25-40.
  13. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York.
  14. Ruiz A, Poblet M, Mas A, Guillamon J. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Sys. Evol. 50: 1981-1987.
    Pubmed
  15. Huang CH, Lee FL, Liou JS. 2010. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie Van Leeuwenhoek 97: 289-296.
    Pubmed
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X:Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
    Pubmed KoreaMed
  17. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed
  18. Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. 2016. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biotechnol. 32: 14.
    Pubmed
  19. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, et al. 2013. Production of bacterial cellulose by Gluconaceto bacter sacchari using dry olive mill residue. Biomass Bioenerg. 55: 205-211.
  20. Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352.
    Pubmed KoreaMed
  21. Aswini K, Gopal NO, Uthandi S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20: 46.
    Pubmed KoreaMed
  22. Gonz?lez ?, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222.
    Pubmed
  23. Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106.
    Pubmed
  24. Trcek J. 2005. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Syst. Appl. Microbiol. 28: 735-745.
    Pubmed
  25. Yamada Y, Akita M. 1984. An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30: 115-126.
  26. Navarro D, Mateo E, Torija M, Mas A. 2013. Acetic acid bacteria in grape must. Acetic Acid Bacteria 2: e4.
  27. Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P, Nakagawa Y. et al. 2008. Identification of Gluconobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 741-747.
  28. Cleenwerck I, De Vos P, De Vuyst L. 2010. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 60: 22772283.
    Pubmed
  29. Qin H, Sun Q, Pan X, Qiao Z, Yang H. 2016. Microbial diversity and biochemical analysis of Suanzhou: A traditional Chinese fermented cereal Gruel. Front. Microbiol. 25: 1311.
  30. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. 2016. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int. J. Food Microbiol. 216: 69-78.
    Pubmed
  31. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. 2001. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol. 47: 119-131.
    Pubmed
  32. Saichana N, Matsushita K, Adachi O, Fr?bort I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260-1271.
    Pubmed
  33. Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 61: 138-145.
  34. Matsutani M, Matsumoto N, Hirakawa H, Shiwa Y, Yoshikawa H, Okamoto-Kainuma A, et al. 2020. Comparative genomic analysis of closely related Acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. J. Bacteriol. 202: e00553-19.
    Pubmed KoreaMed
  35. Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, et al. 2011. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci. Biotechnol. Biochem. 75: 1921-1928.
    Pubmed
  36. Gullo M, Giudıci P. 2008. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125: 46-53.
    Pubmed
  37. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39:916-923.
  38. Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar. Eur. Food Res. Technol. 236: 573-578.

Starts of Metrics

Share this article on :

  • mail

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.