Article Search

Microbiology and Biotechnology Letters


View PDF

Microbial Biotechnology (MB)  |  Cell Culture and Biomedical Engineering

Microbiol. Biotechnol. Lett. 2021; 49(4): 528-533

Received: April 12, 2021; Revised: September 2, 2021; Accepted: September 14, 2021

Microalgae, Tetraselmis tetrathele has Alopecia Prevention and Scalp Improvement

Si-Hyang Park1†, Kyong-Dong Lee2†, Ginnae Ahn3, Hye-Jin Park4, Kap Seong Choi5, Jiyeon Chun5, and Sun-Yup Shim5*

1Sunmarine Biotech Co. Ltd, Jinju 52839, Republic of Korea 2Department of Oriental Medicine Materials, Dongsin University, Naju 58245, Republic of Korea 3Department of Marine Bio-Food Science, Chonnam Natioal University, Yeosu 59626, Republic of Korea 4Department of Food Science and Nutrition, Changshin University, Changwon 51352, Republic of Korea 5Department of Food Science and Biotechnology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea

Correspondence to :
Sun-Yup SHIM,

The microalga, Tetrathelmis tetrathele, is used in the development of products for the aquaculture, food, and nutraceutical industries. In the present study, we investigated whether the T. tetrathele ethanolic extract (TTE), which has anti-inflammatory properties, can confer protection against alopecia and improve scalp health, influence the proliferation of human keratinocytes, HaCaT cells, and human hair follicle dermal papilla cells (HFDPC), or inhibit 5α-reductase activity. We found that TTE inhibited the production of the inflammatory mediator, nitric oxide (NO), and prostaglandin E2 (PGE2) without cytotoxicity in LPSstimulated RAW 264.7 cells. In addition, TTE encouraged the proliferation of HaCaT cells and HFDPC. Our results showed that TTE had anti-inflammatory activities, proliferated HaCaT cells and HFDPC, and inhibited 5α-reductase activity. Therefore, we suggest that T. tetrathele could be a potent therapeutic agent for alopecia prevention and scalp improvement.

Keywords: Tetraselmis Tetrathele, nitric oxide, prostanglandin E2, keratinocytes, human hair follicle dermal papilla cells, 5-alpha reductase

Graphical Abstract

  1. Arnaud MF. 2000. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol. 12: 527-534.
  2. Blanchard M, Pechenik JA, Giudicelli E, Connan JP, Robert R. 2008. Competition for food in the larvae of two marine molluscs, Crepidula fornicata and Crassostrea gigas. Aquat. Living Resour. 21: 197-205.
  3. Lu L, Wang J, Yang G, Zhu B, Pan K. 2017. Heterotrophic growth and nutrient productivities of Tetraselmis chuii using glucose as a carbon source under different C/N ratios. J. Appl. Phycol. 29: 1521.
  4. Magnotti C, Lopes R, Derner R, Vinatea L. 2016. Using residual water from a marine shrimp farming BFT system. Part II: artemia franciscana biomass production fed microalgae grown in reused BFT water. Aquac. Res. 47: 2716-2722.
  5. Grotkjær T, Bentzon-Tilia M, D’Alvise P, Dierckens K, Bossier P, Gram L. 2016. Phaeobacter inhibens as probiotic bacteria in nonaxenic Artemia and algae cultures. Aquaculture 462: 64-69.
  6. Dittmann KK, Rasmussen BB, Melchiorsen J, Sonnenschein EC, Gram L, Bentzon-Tilia M. 2020. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86: e00499-20.
    Pubmed KoreaMed
  7. Tsai HP, Chuang LT, Chen CNN. 2016. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem. 192:682-690.
  8. Farahin AW, Yusoff FM, Basri M, Nagao N, Shariff M. 2019. Use of microalgae: Tetraselmis tetrathele extract in formulation of nanoemulsions for cosmeceutical application. J. Appl. Phycol. 31:1743-1752.
  9. Schüler LM, Santos T, Pereira H, Duarte P, Katkam NG, Florindo C, et al. 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal. Res. 45: 101732.
  10. Farahin AW, Yusoff FM, Nagao N, Basri M, Shariff M. 2016. Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor. J. Environ. Biol. 37: 631-639.
  11. Jeoung YJ, Choi SY, An CS, Jeon YH, Park DK, Lim BO. 2009. Comparative effects on anti-inflammatory activity of the Phellinus linteus and Phellinus linteus grown in germinated brown rice extracts in murine macrophage RAW264.7 cells. Korean J. Med. Crop. Sci. 17: 97- 101.
  12. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 136: 85-94.
  13. Prie BE, Iosif L, Tivig I, Stoian I, Giurcaneanu C. 2016. Oxidative stress in androgenetic alopecia. J. Med. Life 9: 79-83.
  14. Marks-Konczalik J, Chu SC, Moss J. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites. J. Biol. Chem. 273: 22201-22208.
  15. Vane JR, Mitchell JA, Appleton I. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. USA 91: 2046-2050.
    Pubmed KoreaMed
  16. Joung EJ, Lee B, Gwon WG, Shin T, Jung BM, Yoon NY, et al. 2015. Sargaquinoic acid attenuates inflammatory responses by regulating NF-kB and Nrf2 pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Int. Immunopharmacol. 29: 693-700.
  17. Kaplanski G, Marin V, Montero-Jukian F, Mantovani A, Farnarier C. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24: 25-29.
  18. Liu Z, Tang L, Zou P, Zhang Y, Zhe W, Fang Q, et al. 2014. Synthesis and biological evaluation of allylated and prenylated monocarbonyl analogs of curcumin as anti-inflammatory agents. Eur. J. Med. Chem. 74: 671-682.
  19. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 20: 1126-1167.
    Pubmed KoreaMed
  20. Pierce GF. 1990. Macrophages: Important physiologic and pathologic sources of polypeptide growth factors. Am. J. Respir. Cell. Mol. Biol. 2: 233-234.
  21. Chen Q, Sun T, Wang J, Jia J, Yi YH, Chen YX, et al. 2019. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J. Biochem. Mol. Toxicol. 33:e22377.
  22. Diani AR, Mulholland MJ, Shull KL, Kubicek MF, Johnson GA, Schistarez HJ, et al. 1992. Hair growth effects of oral administration of finasteride, a steroid 5α-reductase inhibitor, alone and in combination with topical minoxidil in the balding stumptail macaque. J. Clin. Endocrinol. Metab. 74: 345-350.
  23. Randall VA. 1994. Role of 5α-reducatase in health and disease. Baillieres. Clin. Endocrinol. Metab. 8: 405-431.
  24. Guillard RRL, Ryther JH. 1962. Studies on marine planktonic diatoms I. Cyclotellanana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229-239.
  25. Kang HW. 2012. Antioxidant and anti-inflammatory effect of extracts from Flammulina velutipes (Curtis) singer. J. Korean Soc. Food Sci. Nutr. 41: 1072-1078.
  26. Kim SK, Ravichandran YD, Khan SB, Kim YT. 2008. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 13: 511-523.
  27. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 21: 1-10.
    Pubmed KoreaMed
  28. Piraccini BM, Alessandrini A. 2014. Androgenetic alopecia. G. Ital. Dermatol. Venereol. 149: 15-24.
  29. Wu JH, Sun ZY. 2013. Establishment of an in vitro screening model for steroid 5 alpha-reductase inhibitors with the microplate reader. Zhonghua Nan. Ke. Xue. 19: 483-486.

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.