Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology (EM)  |  Biodegradation and Bioremediation

Microbiol. Biotechnol. Lett. 2021; 49(3): 413-424

https://doi.org/10.48022/mbl.2106.06013

Received: June 22, 2021; Revised: August 5, 2021; Accepted: August 6, 2021

중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel

Soo Yeon Lee, Yun-Yeong Lee, and Kyung-Suk Cho*

Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

Correspondence to :
Kyung Suk Cho,   kscho@ewha.ac.kr

In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

Keywords: Rhizobacteria, plant growth-promoting traits, heavy metals, tolerance, contaminated soil

Graphical Abstract


  1. Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, et al. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262:127810.
    Pubmed
  2. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35:1281-1289.
  3. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. 2019. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 250: 109557.
    Pubmed
  4. Joo JO, Kim IH, Oh B-K. 2014. Removal of Cupper(II), Zinc(II) in marine environment by heavy metal resistant Desulfovibrio desulfuricans. KSBB J. 29: 139-144.
  5. Koo S, Cho K. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Korean J. Microbiol. Biotechnol. 35: 58-65.
  6. Benitez E, Melgar R, Nogales R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol. Biochem. 36: 1615-1623.
  7. Wöhler, I. 1997. Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol. Res. 152: 399-405.
  8. Nagarajkumar M, Bhaskaran R, Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159: 7381.
    Pubmed
  9. Hwang JS, Song HG. 2020. Antifungal activity of Bacillus subtilis isolates against toxigenic fungi. Korean J. Microbiol. 56: 28-35.
  10. Grobelak A, Kokot P, Świątek J, Jaskulak M, Rorat A. 2018. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J. Ecol. Eng. 19: 150-157.
  11. Dell’Amico E, Cavalca L, Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol. 52: 153-162.
    Pubmed
  12. Barrado LN. 2018. Isolation and characterisation of endophytes from vitis vinifera. Univ Politècnica València, pp. 1-25.
  13. Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.
    Pubmed
  14. Hajdu R, Slaveykova VI. 2012. Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: Importance of the complexation and competition effects. Environ. Chem. 9: 389-398.
  15. Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9: 101438.
    Pubmed KoreaMed
  16. Deng Y, Yang F, Deng C, Yang J, Jia J, Yuan H. 2017. Biodegradation of BTEX aromatics by a haloduric microbial consortium enriched from a sediment of Bohai Sea, China. Appl. Biochem. Biotechnol. 183: 893-905.
    Pubmed
  17. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard Mater. 250: 477-483.
    Pubmed
  18. Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164.
    Pubmed
  19. Hong S, Cho K-S. 2007. Effects of plants, rhizobacteria and physicochemical factors on the phytoremediation of contaminated soil. Korean J. Microbiol. Biotechnol. 35: 261-271.
  20. Oh SD, Ahn BO, Kim MK, Sohn SI, Ryu TH, Cho HS, et al. 2010. Effects of protox herbicide tolerance rice cultivation on microbial community in paddy soil. Korean J. Env. Agric. 32: 95-101.
  21. Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B - Biol Sci. 85: 1-12.
  22. Ashraf R, Ali TA. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan J. Bot. 39: 629.
  23. Wang L, Wang J, Zhu L, Wang J. 2018. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. Environ. Geochem. Health 40: 763-776.
    Pubmed
  24. Kabagale AC, Cornu B, Van Vliet F, Meyer CL, Mergeay M, Simbi JBL, et al. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334: 461-474.
  25. Xiao L, Yu Z, Liu H, Tan T, Yao J, Zhang Y, et al. 2020. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology 29: 551-558.
    Pubmed
  26. Prapagdee B, Watcharamusik A. 2009. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmiumresistant bacterium isolated from a zinc mine. Braz. J. Microbiol. 40: 838-845.
    Pubmed KoreaMed
  27. Estrada-De Los Santos P, Solano-Rodríguez R, Matsumura-Paz LT, Vásquez-Murrieta MS, Martínez-Aguilar L. 2014. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol. 196: 811-817.
    Pubmed
  28. Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, et al. 2012. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 80: 417426.
    Pubmed
  29. Yang C, Ho YN, Makita R, Inoue C, Chien MF. 2020. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol. Environ. Saf. 190: 110075.
    Pubmed
  30. Siripornadulsil S, Siripornadulsil W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol. Environ. Saf. 94: 94-103.
    Pubmed
  31. Vicentin RP, Santos JV, Labory CRG, Costa AM, Moreira FMS, Alves E. 2018. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator. Rev. Bras. Cienc do Solo. 42: 1-12.
  32. Siripornadulsil S, Thanwisai L, Siripornadulsil W. 2014. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity. Can J. Microbiol. 60: 121-131.
    Pubmed
  33. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D. 2009. Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomallylocated functions. Antonie Van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 96: 171-182.
    Pubmed
  34. Huang N, Mao J, Hu M, Wang X, Huo M. 2019. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J. Basic Microbiol. 59: 446-457.
    Pubmed
  35. Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard Mater. 151: 364-371.
    Pubmed
  36. Minari GD, Saran LM, Constancio MTL, da Silva RC, Rosalen DL, de Melo WJ, et al. 2020. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicol. Environ. Saf. 204: 111038.
    Pubmed
  37. Li X, Yan Z, Gu D, Li D, Tao Y, Zhang D, et al. 2019. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J. Basic Microbiol. 59: 579-590.
    Pubmed
  38. Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, et al. 2019. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234: 769-776.
    Pubmed
  39. Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J, Farh MEA, et al. 2015. Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 107: 749-758.
    Pubmed
  40. Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. 2016. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere 162: 31-39.
    Pubmed
  41. Ledger T, Zúñiga A, Kraiser T, Dasencich P, Donoso R, PérezPantoja D, et al. 2012. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101: 713-723.
    Pubmed
  42. Kämpfer P, Martin K, McInroy JA, Glaeser SP. 2015. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int. J. Syst. Evol. Microbiol. 65: 195-200.
    Pubmed
  43. Krishnan R, Menon RR, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. 2017. Novosphingobium pokkalii sp. nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res. Microbiol. 168: 113-121.
    Pubmed
  44. Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogenfixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 53: 1004-1015.
    Pubmed
  45. Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569.
    Pubmed
  46. Chettri B, Singh AK. 2019. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 294:122190.
    Pubmed
  47. Liu X, Liu M, Chen X, Yang Y, Hou L, Wu S, et al. 2019. Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications. Mar. Pollut. Bull. 142: 419-427.
    Pubmed
  48. Segura A, Udaondo Z, Molina L. 2021. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ. Microbiol. 23: 2969-2991.
    Pubmed KoreaMed
  49. Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. 2016. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl. Microbiol. Biotechnol. 100: 1062710636.
    Pubmed
  50. Ke T, Zhang J, Tao Y, Zhang C, Zhang Y, Xu Y, et al. 2021. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. Chemosphere 263: 127952.
    Pubmed
  51. Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Othman AR, Idris M. 2020. Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol. 23: 101456.
  52. Saharan BS, Verma S. 2014. Potential plant growth promoting activity of Bacillus licheniformis UHI(II)7. Int. J. Microb. Resour. Technol. 2: 22-27.
  53. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed AE, et al. 2021. Role of Bacillus cereus in improving the growth and Phytoextractability of Brassica nigra (L.) K. koch in chromium contaminated soil. Molecules 26: 1569.
    Pubmed KoreaMed
  54. Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. 2019. Cadmiumresistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ. Toxicol. Pharmacol. 72: 103265.
    Pubmed
  55. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 85998605.
    Pubmed
  56. Heidari P, Panico A. 2020. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 17: 4059.
    Pubmed KoreaMed
  57. Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, et al. 2019. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal. Agric. Biotechnol. 17: 665-671.
  58. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51: 11-17.
    Pubmed
  59. Al-Sharidah A, Richardt A, Golecki JR, Dierstein R, Tadros MH. 2000. Isolation and characterization of two hydrocarbondegrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol. Res. 155: 157-164.
  60. Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA. 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Technol. 6: 435-442.
  61. Patowary K, Saikia RR, Kalita MC, Deka S. 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann. Microbiol. 65: 225-234.
  62. Yuniarti E, Dalmacio IF, Paterno ES. 2019. Heavy metal-resistant rhizobacteria from gold mine in Pongkor Indonesiaa and copper mine in Marinduque Philippines. J. ILMU Pertan. 31: 75-88.
  63. Huang Y, Li L. 2014. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ. Res. 86: 277-284.
    Pubmed

Starts of Metrics

Share this article on :

  • mail

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.