Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology (EM)  |  Biodegradation and Bioremediation

Microbiol. Biotechnol. Lett. 2021; 49(2): 225-238

https://doi.org/10.48022/mbl.2102.02007

Received: February 15, 2021; Revised: March 24, 2021; Accepted: March 26, 2021

옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성

Characterization of CH4-oxidizing and N2O-reducing Bacterial Consortia Enriched from the Rhizospheres of Maize and Tall Fescue

Soojung Lee, Seoyoung Kim, Ye Ji Kim, Yun-Yeong Lee, and Kyung-Suk Cho*

Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

Correspondence to :
Kyung Suk Cho,       kscho@ewha.ac.kr

CH4-oxidizing and N2O-reducing bacterial consortia were enriched from the rhizosphere soils of maize (Zea mays) and tall fescue (Festuca arundinacea). Illumina MiSeq sequencing analysis was performed to comparatively analyze the bacterial communities of the consortia with those of the rhizosphere soils. Additionally, the effect of root exudate on CH4 oxidation and N2O reduction activities of the microbes was evaluated. Although the inoculum sources varied, the CH4-oxidizing and N2O-reducing consortia derived from maize and tall fescue were similar. The predominant methanotrophs in the CH4-oxidizing consortia were Methylosarcina, Methylococcus, and Methylocystis. Among the N2O-reducing consortia, the representative N2Oreducing bacteria were Cloacibacterium, Azonexus, and Klebsiella. The N2O reduction rate of the N2O reducing consortium from maize rhizosphere and tall fescue rhizosphere increased by 1.6 and 2.7 times with the addition of maize and tall fescue root exudates, respectively. The CH4 oxidization activity of the CH4-oxidizing consortia did not increase with the addition of root exudates. The CH4-oxidizing and N2Oreducing consortia can be used as promising bioresources to mitigate non-CO2 greenhouse gas emissions during remediation of oil-contaminated soils.

Keywords: Methane, nitrous oxide, bacterial consortium, maize, tall fescue, rhizosphere

  1. Olivier JG, Schure KM, Peters JAHW. 2017. Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, 2674.
  2. IPCC. 2014. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 151. IPCC, Geneva, Switzerland.
  3. Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CM. 2020. Rhizoremediation-A promising tool for the removal of soil contaminants: A review. J. Environ. Chem. Eng. 8: 103543.
  4. Cho KS, Jung H. 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45: 185199.
  5. Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26: 43-55.
    Pubmed
  6. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288.
  7. Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. 2019. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. USA 116:8515-8524.
    Pubmed KoreaMed
  8. Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net N2O-reduction properties of novel aerobically N2O-reducing bacteria. Soil. Sci. Plant Nutr. 62: 230-239.
  9. Seo Y, Cho KS. 2020. Rhizoremdiation of petroleum hydrocarboncontaminated soils and greenhouse gas emission characteristics:A review. Microbiol. Biotechnol. Lett. 48: 99-112.
  10. Cho KS. 2020. Plant growth-promoting bacteria for remediation of heavy metal contaminated soil: Characteristics, application and prospects. Microbiol. Biotechnol. Lett. 48: 399-422.
  11. Praeg N, Illmer P. 2020. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10: 1-16.
    Pubmed KoreaMed
  12. Gilbert B, Frenzel P. 1995. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fertil. Soils. 20: 93-100.
  13. Chèneby D, Perrez S, Devroe C, Hallet S, Couton Y, Bizouard F, et al. 2004. Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can. J. Microbiol. 50:469-474.
    Pubmed
  14. Lugtenberg BJ, Kravchenko LV, Simons M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1: 439-446.
    Pubmed
  15. Cao X, Wang J, Liu S, Chen L, Xiang D, Na X, et al. 2020. Effect of different fertilizers on the bacterial community diversity in rhizosperic soil of broomcorn millet (Panicum miliaceum L.). Arch. Agron. Soil Sci. (in press). https://doi.org/10.1080/03650340.2020.1849625
  16. Cantó CF, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, et al. 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103: 951-964.
    Pubmed
  17. Koo SY, Cho KS. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metal-contaminated soil. Microbiol. Biotechnol. Lett. 34: 83-93.
  18. Iannucci A, Canfora L, Nigro F, De Vita P, Beleggia R. 2021. Relationships between root morphology, root exudate compounds and rhizosphere microbial community in durum wheat. Appl. Soil Ecol. 158: 103781.
  19. Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2020. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.
    Pubmed
  20. Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants:potential and challenges. Plant Sci. J. 176: 20-30.
  21. Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX. 2010. Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7: 3961-3969.
  22. Guo M, Gong Z, Miao R, Jia C, Rookes J, Cahill D, et al. 2018. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: Bacterial community and functional gene expression mechanisms. Chemosphere 212: 15-23.
    Pubmed
  23. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120.
    Pubmed KoreaMed
  24. Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, et al. 2015. Phasing amplicon sequencing on Illumina MiSeq for robust environmental microbial community analysis. BMC Microbiol. 15: 1-12.
    Pubmed KoreaMed
  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335336.
    Pubmed KoreaMed
  26. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890.
    Pubmed KoreaMed
  27. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957-2963.
    Pubmed KoreaMed
  28. Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 13:656-668.
    Pubmed KoreaMed
  29. Lee EH, Yi TW, Moon KE, Park HJ, Ryu HW, Cho KS. 2011. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J. Microbiol. Biotechnol. 21: 753-756.
    Pubmed
  30. Park HJ, Kwon JH, Yun J, Cho KS. 2020. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. J. Environ. Sci. Health A 55: 1459-1467.
    Pubmed
  31. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in markergene data analysis. ISME J. 11: 2639-2643.
    Pubmed KoreaMed
  32. Spain AM, Krumholz LR, Elshahed MS. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 3: 992-1000.
    Pubmed
  33. Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728.
    Pubmed KoreaMed
  34. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. 2006. Introduction to the Proteobacteria, pp. 3-37. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.). The prokaryotes: a handbook on the biology of bacteria, 3rd Ed. Springer, New York. USA.
  35. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. 2016. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7: 744.
  36. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, et al. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43.
    Pubmed KoreaMed
  37. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, et al. 2018. Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications, pp. 13-41. In Singh BP, Gupta VK, Passari AK (eds.), New and future developments in microbial biotechnology and bioengineering, 1st Ed. Elsevier, India.
  38. Sait M, Davis KE, Janssen PH. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 18521857.
    Pubmed KoreaMed
  39. Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111-5120.
    Pubmed KoreaMed
  40. AlSayed A, Fergala A, Eldyasti A. 2019. Enhancement of the cultivation process conditions of mixed culture methanotrophic Proteobacteria phylum enriched from waste activated sludge as the first step for value added recovery process. J. Biosci. Bioeng. 127: 602-608.
    Pubmed
  41. Héry M, Singer AC, Kumaresan D, Bodrossy L, Stralis-Pavese N, Prosser JI, et al. 2008. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J. 2: 92-104.
    Pubmed
  42. Crevecoeur S, Vincent WF, Comte J, Lovejoy C. 2015. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front. Microbiol. 6: 192.
    Pubmed KoreaMed
  43. Torres MJ, Simon J, Rowley G, Bedmar EJ, Richardson DJ, Gates AJ, et al. 2016. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68: 353-432.
    Pubmed
  44. Harter J, El-Hadidi M, Huson DH, Kappler A, Behrens S. 2017. Soil biochar amendment affects the diversity of nosZ transcripts:implications for N2O formation. Sci. Rep. 7: 1-14.
    Pubmed KoreaMed
  45. Graf DR, Jones CM, Hallin S. 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9: e114118.
    Pubmed KoreaMed
  46. Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208.
    Pubmed KoreaMed
  47. Kalyuzhnaya MG. 2015. Methylosarcina. BMSAB. 1-7.
  48. Conthe M, Parchen C, Stouten G, Kleerebezem R, van Loosdrecht MC. 2018. O2 versus N2O respiration in a continuous microbial enrichment. Appl. Microbiol. Biotechnol. 102: 89438950.
    Pubmed KoreaMed
  49. Fan SQ, Xie GJ, Lu Y, Liu BF, Xing DF, Ding J, et al. 2020. Nitrate/nitrite dependent anaerobic methane oxidation coupling with anammox in membrane biotrickling filter for nitrogen removal. Environ. Res. 193: 110533.
    Pubmed
  50. Cao Q, Liu X, Li N, Xie Z, Li Z, Li D. 2019. Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification. Environ. Pollut. 250: 863872.
    Pubmed
  51. Govorukhina NI, Trotsenko YA. 1991. Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol. 41: 158-162.
  52. Luangthongkam P, Strong PJ, Mahamud SNS, Evans P, Jensen P, Tyson G, et al. 2019. The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresour. Bioprocess. 6: 1-10.
  53. Su Y, Xia FF, Tian BH, Li W, He R. 2014. Microbial community and function of enrichment cultures with methane and toluene. Appl. Microbiol. Biotechnol. 98: 3121-3131.
    Pubmed
  54. Yoon S, Nissen S, Park D, Sanford RA, Löffler FE. 2016. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl. Environ. Microbiol. 82: 3793-3800.
    Pubmed KoreaMed
  55. Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, Hallin S, van Loosdrecht MC. 2018. Growth yield and selection of nosZ clade II types in a continuous enrichment culture of N2O respiring bacteria. Environ. Microbiol. Rep. 10: 239-244.
    Pubmed
  56. Kim DD, Park D, Yoon H, Song MJ, Yun T, Yoon S. 2019. Development of group-specific nosZ quantification method targeting active nitrous oxide reducing population in complex environmental samples. bioRxiv. 710483.
  57. Quan ZX, Im WT, Lee ST. 2006. Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 56: 1043-1046.
    Pubmed
  58. Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. 2019. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. Sci. Total Environ. 651: 998-1010.
    Pubmed
  59. Li H, Zhou Z, Liu Q, Dong H, Duan Y, Li C, et al. 2015. Biological denitrification in high salinity wastewater using semen litchi as a carbon source. RSC Adv. 5: 92836-92842.
  60. Verbaendert I, Boon N, De Vos P, Heylen K. 2011. Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 34: 385-391.
    Pubmed
  61. Wang H, Chen N, Feng C, Deng Y, Gao Y. 2020. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution. Chemosphere 253:126693.
    Pubmed
  62. Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, et al. 2020. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere 245: 125394.
    Pubmed
  63. Martineau C, Mauffrey F, Villemur R. 2015. Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl. Environ. Microbiol. 81: 5003-5014.
    Pubmed KoreaMed
  64. Kamika I, Tekere M. 2017. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 7: 63.
    Pubmed KoreaMed
  65. Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, et al. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl. Acad. Sci. USA 109: 19709-19714.
    Pubmed KoreaMed
  66. Han F, Zhang M, Shang H, Liu Z, Zhou W. 2020. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater. Bioresour. Technol. 315:123826.
    Pubmed
  67. McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, et al. 2016. Identification of active denitrifiers in full‐scale nutrient removal wastewater treatment systems. Environ. Microbiol. 18: 50-64.
    Pubmed
  68. Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. 2019. Optimized aeration strategies for nitrogen removal efficiency:Application of end gas recirculation aeration in the fixed bed biofilm reactor. Environ. Sci. Pollut. Res. Int. 26: 28216-28227.
    Pubmed
  69. Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. 2014. Functional potential of soil microbial communities in the maize rhizosphere. PLoS One 9: e112609.
    Pubmed KoreaMed
  70. Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol. Biochem. 129: 191-200.
  71. Uchida Y, Clough J. 2015. Nitrous oxide emissions from pastures during wet and cold seasons. Grassl. Sci. 61: 61-74.
  72. Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, et al. 2017. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68: 806816.
    Pubmed KoreaMed
  73. Tays C, Guarnieri MT, Sauvageau D, Stein LY. 2018. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9: 2239.
    Pubmed KoreaMed
  74. Bodelier PL, Roslev P, Henckel T, Frenzel P. 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403: 421-424.
    Pubmed
  75. Turner JC, Moorberg CJ, Wong A, Shea K, Waldrop MP, Turetsky MR, et al. 2020. Getting to the root of plant‐mediated methane emissions and oxidation in a Thermokarst bog. JGR Biogeosciences 125: e2020JG005825.
  76. Valé M, Nguyen C, Dambrine E, Dupouey JL. 2005. Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol. Biochem. 37: 2329-2333.
  77. Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleumcontaminated soil. Plant Soil 389: 109-119.
  78. Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, et al. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10: 3082-3092.
    Pubmed
  79. Florio A, Bréfort C, Gervaix J, Bérard A, Le Roux X. 2019. The responses of NO2 −-and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biol. Biochem. 136: 107524.
  80. Lee YY, Choi H, Cho KS. 2019. Effects of carbon source, C/N ratio, nitrate, temperature, and pH on N2O emission and functional denitrifying genes during heterotrophic denitrification. J. Environ. Sci. Health A. 54: 16-29.
    Pubmed
  81. Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, et al. 2019. Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil. 445: 39-53.
  82. Hénault C, Bourennane H, Ayzac A, Ratié C, Saby NP, Cohan JP, et al. 2019. Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Sci. Rep. 9: 1-11.
    Pubmed KoreaMed
  83. Chen T, Liu Y, Zhang B, Sun L. 2019. Plant rhizosphere, soil microenvironment, and functional genes in the nitrogen removal process of bioretention. Environ Sci Process Impacts 21:2070-2079.
    Pubmed
  84. He X, Yin H, Sun X, Han L, Huang G. 2018. Effect of different particlesize biochar on methane emissions during pig manure/wheat straw aerobic composting: Insights into pore characterization and microbial mechanisms. Bioresour. Technol. 268: 633637.
    Pubmed
  85. Topp E, Pattey E. 1997. Soils as sources and sinks for atmospheric methane. Canadian J. Soil Sci. 77: 167-177.
  86. Wrage N, Velthof GL, van Beusichem ML, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732.
  87. Karakurt I, Aydin G, Aydiner K. 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 39: 40-48.
  88. Koo CW, Rosenzweig AC. 2021. Biochemistry of aerobic biological methane oxidation. Chem. Soc. Rev. 50: 3424-3436.
    Pubmed
  89. Venterea RT. 2007. Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Glob. Change Biol. 13: 1798-1809.
  90. Wrage N, Velthof GL, van Beusichem ML, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732.
  91. Sierra CA, Malghani S, Loescher HW. 2017. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 14: 703-710.

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.