Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Microbial Biotechnology (MB)  |  Enzyme, Protein Engineering, and Metabolic Engineering

Microbiol. Biotechnol. Lett. 2021; 49(2): 181-191

https://doi.org/10.48022/mbl.1904.04003

Received: April 12, 2019; Accepted: May 30, 2019

Optimization, Purification, and Characterization of Haloalkaline Serine Protease from a Haloalkaliphilic Archaeon Natrialba hulunbeirensis Strain WNHS14

Rania S Ahmed1, Amira M Embaby2, Mostafa Hassan3, Nadia A Soliman1*, and Yasser R Abdel-Fattah1

1Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt 2Institute of Graduate Studies and Research, Biotechnology Department, 3Institute of Graduate Studies and Research, Environmental Studies Department, Alexandria University, Alexandria 21526, Egypt

The present study addresses isolation, optimization, partial purification, and characterization of a haloalkaline serine protease from a newly isolated haloarchaeal strain isolated from Wadi El Natrun in Egypt. We expected that a two-step sequential statistical approach (one variable at a time, followed by response surface methodology) might maximize the production of the haloalkaline serine protease. The enzyme was partially purified using Hiprep 16/60 sephacryl S-100 HR gel filtration column. Molecular identification revealed the newly isolated haloarchaeon to be Natrialba hulunbeirensis strain WNHS14. Among several tested physicochemical determinants, casamino acids, KCl, and NaCl showed the most significant effects on enzyme production as determined from results of the One-Variable-At-A-time (OVAT) study. The Box- Behnken design localized the optimal levels of the three key determinants; casamino acids, KCl, and NaCl to be 0.5% (w/v), 0.02% (w/v), and 15% (w/v), respectively, obtaining 62.9 U/ml as the maximal amount of protease produced after treatment at 40℃, and pH 9 for 9 days with 6-fold enhancement in yield. The enzyme was partially purified after size exclusion chromatography with specific activity, purification fold, and yield of 1282.63 U/mg, 8.9, and 23%, respectively. The enzyme showed its maximal activity at pH, temperature, and NaCl concentration optima of 10, 75℃, and 2 M, respectively. Phenylmethylsulfonyl fluoride (PMSF, 5 mM) completely inhibited enzyme activity.

Keywords: Protease, Haloalkaliphilic, archaea, Natrialba hulunbeirensis, enzyme production

  1. Abdel-Fattah YR, El-Enshasy HA, Soliman NA, El-Gendi H. 2009. Bioprocess development for production of alkaline protease by Bacillus pseudofirmus Mn6 through statistical experimental designs. J. Microbiol. Biotechnol. 19: 378-386.
    Pubmed
  2. Adams MWW, Kelly RM. 1995. Enzymes from microorganisms in extreme environments. Chem. Eng. News. 17: 32-42.
  3. Akolkar A, Bharambe N, Trivedi S, Desai A. 2009. Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1). Lett. Appl. Microbiol. 48: 77-83.
    Pubmed
  4. Castillo AM, Gutiérrez MC, Kamekura M, Ma Y, Cowan DA, Jones BE, et al. 2006. Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int. Syst. Evol. Microbiol. 56: 765-770.
    Pubmed
  5. Chauhan B, Gupta R. 2004. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 39: 2115-2122.
  6. D’Alessandro CP, De Castro RE, Giménez MI, Paggi RA. 2007. Effect of nutritional conditions on extracellular protease production by the haloalkaliphilic archaeon Natrialba magadii. Lett. Appl. Microbiol. 44: 637-642.
    Pubmed
  7. DasSarma S, DasSarma P. 2001. Halophiles, eLS. John Wiley and Sons Ltd, Chichester.
  8. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF. 1997. 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J. Bacteriol. 179: 3146-3153.
    Pubmed KoreaMed
  9. Fan H, Xue Y, Ma Y, Ventosa A, Grant WD. 2004. Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int. Syst. Evol. Microbiol. 54: 1213-1216.
    Pubmed
  10. Ferrero MA, Castro GR, Abate CM, Baigorí MD, Siñeriz F. 1996. Thermostable alkaline proteases of Bacillus licheniformis MIR 29:isolation, production and characterization. Appl. Microbiol. Biotechnol. 45: 327-332.
  11. Ghorbel B, Sellami-Kamoun A, Nasri M. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32:513-518.
  12. Gimenez MI, Studdert CA, Sánchez JJ, De Castro RE. 2000. Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4: 181-188.
    Pubmed
  13. Gomes J, Steiner W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42: 223-235.
  14. Gupta M, Aggarwal S, Navani NK, Choudhury B. 2015. Isolation and characterization of a protease-producing novel haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR from Sambhar lake in Rajasthan, India. Ann. Microbiol. 65: 677-686.
  15. Gupta M, Sharma P, Dev K, Sourirajan A. 2016. Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochem. Res. Int. 2016: 1-10.
    Pubmed KoreaMed
  16. Hacěne H, Rafa F, Chebhouni N, Boutaiba S, Bhatnagar T, Baratti JC, et al. 2004. Biodiversity of prokaryotic microflora in El Golea Salt lake, Algerian Sahara. J. Arid Environ. 58: 273-284.
  17. Hu L, Pan H, Xue Y, Ventosa A, Cowan DA, Jones BE, et al. 2008. Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int. Syst. Evol. Microbiol. 58: 1705-1708.
    Pubmed
  18. Joshi RH, Dodia MS, Singh SP. 2008. Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol. Bioprocess Eng. 13: 552-559.
  19. Kamekura M, Seno Y. 1990. A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem. Cell Biol. 68: 352-359.
    Pubmed
  20. Kembhavi AA, Kulkarni A, Pant A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38: 83-92.
    Pubmed
  21. Konig H, Stetter KO. 1989. Archaeobacteria, in Bergey's Manual of Systematic Bacteriology, pp. 2171-2253. Vol. 3, J.T. Staley MP, Bryant N Pfennig, and J.G. Holt, Editors. 1989, Williams and Wilkens, Baltimore.
  22. Kumar CG. 2002. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett. Appl. Microbiol. 34: 13-17.
    Pubmed
  23. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
    Pubmed
  24. Lanyi JK. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272-290.
    Pubmed KoreaMed
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
  26. Madern D, Ebel C, Zaccai G. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98.
    Pubmed
  27. Manikandan M, Kannan V, Velikonja BH, Pašić L. 2011. Optimization of growth medium for protease production by Haloferax Lucentensis VKMM 007 by response surface methodology. Braz. J. Microbiol. 42: 818-824.
    Pubmed KoreaMed
  28. Mortez E, Krogh TN, Vorum H, Görg A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1: 1359-1363.
  29. Oren A. 2007. Biodiversity in highly saline environments, in:Gerday, C., Glansdorff, N. (eds.), pp 223-231. Physiology and Biochemistry of Extremophiles. ASM Press, Washington.
  30. Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.
  31. Paggi RA, Martone CB, Fuqua C, De Castro RE. 2003. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol. Lett. 221: 49-52.
  32. Palsaniya P, Mishra R, Beejawat N, Sethi S, Gupta BL. 2012. Optimization of alkaline protease production from bacteria isolated from soil. J. Microbiol. Biotechnol. Res. 2: 858-865.
  33. Patel R, Dodia M, Singh SP. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp., Production and optimization. Process Biochem . 40: 3569-3575.
  34. Patel S, Saraf M. 2015. Perspectives and application of halophilic enzymes. pp 403-419. In Maheshwari, D.K., Saraf, M. (Eds.), Halophiles: Biodiversity and Sustainable Exploitation. Springer International Publishing, Cham.
  35. Rahman RNZA, Geok LP, Basri M, Salleh AB. 2005. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour. Technol. 96: 429-436.
    Pubmed
  36. Sánchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A. 2003. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7: 221-228.
    Pubmed
  37. Schiralid C, Giuliano M, De Rosa M. 2002. Perspectives on biotechnological applications of archaea. Archaea 1: 75-86.
    Pubmed KoreaMed
  38. Selim S, Hagagy N, Aziz MA, El-Meleigy ES, Pessione E. 2014. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat. Prod. Res. 28:1476-1479.
    Pubmed
  39. Shi W, Tang X-F, Huang Y, Gan F, Tang B, Shen P. 2006. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: Gene cloning, expression and characterization. Extremophiles 10: 599-606.
    Pubmed
  40. Sinha R, Khare SK. 2013. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour. Technol. 145: 357-361.
    Pubmed
  41. Studdert CA, Herrera Seitz MK, Plasencia Gil MI, Sanchez JJ, de Castro RE. 2001. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol. 41: 375-383.
  42. Vidyasagar M, Prakash SB, Sreeramulu K. 2006. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett. Appl. Microbiol. 43: 385-391.
    Pubmed
  43. VijayAnand S, Hemapriya J, Selvin J, Kiran S. 2010. Production and optimization of haloalkaliphilic protease by an extremophileHalobacterium sp. Js1, isolated from thalassohaline environment. Glob. J. Biotechnol. Biochem. 5: 44-49.
  44. Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. 74: 50885090.
    Pubmed KoreaMed
  45. Xu Y, Zhou P, Tian X. 1999. Characterization of two novel haloalkaliphilic archaea Natronorubrurn bangense gen. nov., sp. nov. and Natronorubrurn tibetense gen. nov., sp. nov. Int. Syst. Evol. Bacteriol. 49: 261-266.
    Pubmed

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.