Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology (EM)  |  Microbial Ecology and Bioremediation

Microbiol. Biotechnol. Lett. 2021; 49(1): 101-110

https://doi.org/10.48022/mbl.2009.09001

Received: September 7, 2020; Accepted: November 6, 2020

Chlorella sp. MF1907의 광합성 활성에 미치는 다양한 종속영양 세균의 영향

Effects of Different Heterotrophic Bacteria on Phototrophic Activity of Chlorella sp. MF1907

Young Jin Noh, So-Yeon Jeong*, and Tae Gwan Kim*

Department of Microbiology, Pusan National University, Pusan 46241, Republic of Korea

Correspondence to :
So-Yeon Jeong,     jeongsy@pusan.ac.kr
Tae Gwan Kim,     tkim@pusan.ac.kr

Interactions between microalgae and heterotrophic bacteria may be common in natural environments. This study investigates the effects of heterotrophic bacteria on activity of the photosynthetic eukaryotic alga Chlorella sp. MF1907 when co-cultured. A total number of 31 heterotrophic bacterial isolates (belonging to different genera) were co-cultured with MF1907. Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium and Pseudomonas were positive, while Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis and Erythrobacter were negative (P<0.05). A turnover experiment from heterotrophic to autotrophic activity of MF1907 was performed with 16 isolates having apparent effects (positive, negative and neutral). Compared with the results of the co-culture experiment, 8 isolates exhibited the same outcomes, while the others did not. Consistently, Pseudomonas and Agromyces showed a strong positive effect on MF1907 activity, and Burkholderia, Streptomyces and Erythrobacter had a strong negative effect. Our results suggest that it may be possible to use those isolates for controlling populations of microalgae in natural and engineering environments.

Keywords: Chlorella sp., Heterotrophic bacteria, Interaction

  1. Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489.
  2. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.
    Pubmed
  3. Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648.
    Pubmed
  4. Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593.
  5. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804.
    Pubmed
  6. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213.
  7. Xie T, Sun Y, Du K, Liang B, Cheng R, Zhang Y. 2012. Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresour. Technol. 118: 235-242.
    Pubmed
  8. Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201.
    Pubmed
  9. Mouget J-L, Dakhama A, Lavoie MC, de la Noüe J. 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 18: 35-43.
  10. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. 2019. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J. Appl. Microbiol. 126: 359-368.
    Pubmed
  11. Guo Z, Tong YW. 2014. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 26: 14831492.
  12. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93.
    Pubmed
  13. Kim H-J, Choi Y-K, Jeon HJ, Bhatia SK, Kim Y-H, Kim Y-G, et al. 2015. Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria, Microbacterium sp. HJ1. Biomass Bioenerg. 74: 213-219.
  14. Mujtaba G, Rizwan M, Lee K. 2017. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem. 49: 145-151.
  15. Gonçalves AL, Pires JC, Simões M. 2016. Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria. J. Clean. Prod. 133: 348-357.
  16. Luo J, Wang Y, Tang S, Liang J, Lin W, Luo L. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS One 8:e76444.
    Pubmed KoreaMed
  17. Zhang B, Cai G, Wang H, Li D, Yang X, An X, et al. 2014. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa. PLoS One 9: e92907.
    Pubmed KoreaMed
  18. Perales-Vela HV, García RV, Gómez-Juárez EA, Salcedo-Álvarez MO, Cañizares-Villanueva RO. 2016. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe 132: 311-317.
    Pubmed
  19. Zheng N, Ding N, Gao P, Han M, Liu X, Wang J, et al. 2018. Diverse algicidal bacteria associated with harmful bloomforming Karenia mikimotoi in estuarine soil and seawater. Sci. Total Environ. 631: 1415-1420.
    Pubmed
  20. Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008.
  21. Heredia-Arroyo T, Wei W, Hu B. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162: 1978-1995.
    Pubmed
  22. Berthold DE, Shetty KG, Jayachandran K, Laughinghouse IV HD, Gantar M. 2019. Enhancing algal biomass and lipid production through bacterial co-culture. Biomass Bioenerg. 122:280-289.
  23. Somdee T, Sumalai N, Somdee A. 2013. A novel actinomycete Streptomyces aurantiogriseus with algicidal activity against the toxic cyanobacterium Microcystis aeruginosa. J. Appl. Phycol. 25: 1587-1594.
  24. Waksman SA, Reilly HC, Johnstone DB. 1946. Isolation of streptomycinproducing strains of Streptomyces griseus. J. Bacteriol. 52: 393-397.
    KoreaMed
  25. Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z. 2012. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 27: 229-237.
    Pubmed
  26. Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133.
    Pubmed KoreaMed
  27. Liang Y, Sarkany N, Cui Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31: 1043-1049.
    Pubmed
  28. Kim S, Park J-E, Cho Y-B, Hwang S-J. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13.
    Pubmed

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.