Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Food Microbiology (FM)  |  Bioactive Compounds or Metabolites: Function and Application

Microbiol. Biotechnol. Lett. 2021; 49(1): 24-31

https://doi.org//10.48022/mbl.2010.10012

Received: October 21, 2020; Accepted: November 23, 2020

Melanogenesis Inhibitory Activity of Epicatechin-3-OGallate Isolated from Polygonum amphibium L.

Melanogenesis inhibitory activities of Epicatechin-3-O-gallate isolated from Polygonum amphibium L.

Young Kyung Lee, Buyng Su Hwang, Yong Hwang, Seung Young Lee, Young Taek Oh, Chul Hwan Kim, Hyeon Ju Nam, and Yong Tae Jeong*

Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea

Correspondence to :
Yong Tae Jeong,
ytjeong@nnibr.re.kr

This study aimed to investigate the melanogenesis inhibitory activity of epicatechin-3-O-gallate (ECG) isolated from Polygonum amphibium L. ECG was isolated from the ethanol extract of P. amphibium L, and its chemical structure was determined using spectroscopic methods such as LC-ESI-MS, 1D-NMR, and UV spectroscopy. ECG inhibited the melanogenesis of B16F10 cells in a dose-dependent manner. Particularly, it decreased the melanin content by 27.4% at 200 μM concentration, compared with the control, in B16F10 cells, without causing cytotoxicity. It is noteworthy that the expression of three key proteins, including tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), involved in melanogenesis, is significantly inhibited by ECG. The ECG isolated in this study caused the inhibition of body pigmentation and tyrosinase activity in vivo in the zebrafish model. These results suggest that the ECG isolated from P. amphibium L. is an effective anti-melanogenesis agent.

Keywords: Polygonum amphibium L., melanogenesis, B16F10, Epicachin-3-O-gallate

  1. Yaqian G, Bhandari GS, Park JH, Park CW. 2013. A systematic study of the Polygonum amphibium L. complex (Polygonaceae) based on chloroplast DNA sequences. Korean J. Pl. Taxon. 43: 34-45.
  2. Smolarz HD, Surdacka A, Rolinski J. 2003. Influence of ethyl acetate extract and quercetin-3-methyl ether from Polygonum amphibium on activation lymphocytes from peripheral blood of healthy donor in vitro. Phytother. Res. PTR. 17: 744-747.
    Pubmed
  3. Smolarz HD, Budzianowski J, Bogucka-Kocka A, Kocki J, Mendyk E. 2008. Flavonoid glucuronides with anti-leukaemic activity from Polygonum amphibium L. Phytochem. Anal : PCA 19: 506513.
    Pubmed
  4. Kwon SH, Na HR, Jung JD, Baek NI, Park SK, Choi HK. 2012. A comparison of radical scavenging activity and cyanobacteria growth inhibition of aquatic vascular plants. Korean J. Ecol. Environ. 45:11-20.
  5. Hwang BS, Lee SY, Kang CH, Han W, Oh YT, Yu SM, et al. 2019. Whitening activities of ethanol extract from Polygonum amphibium L. Microbiol. Biotechnol. Lett. 42: 195-200.
  6. Yun JW, Seo JA, Jeong YS, Bae IH, Jang WH, Lee J, et al. 2011. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J. Dermatol. Sci. 62: 8-15.
  7. Tsatmali M, Ancans J, Thody AJ. 2002. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50: 125-133.
    Pubmed
  8. Briganti S, Camera E, Picardo M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16:101-110.
    Pubmed
  9. Akiu S, Suzuki Y, Asahara T, Fujinuma Y, Fukuda M. 1991. [Inhibitory effect of arbutin on melanogenesis--biochemical study using cultured B16 melanoma cells]. Nihon Hifuka Gakkai zasshi. Japanese J. Dermatol. 101: 609-613.
  10. Fujimoto N, Watanabe H, Nakatani T, Roy G, Ito A. 1998. Induction of thyroid tumours in (C57BL/6N x C3H/N)F1 mice by oral administration of kojic acid. Food Chem. Toxicol. 36: 697-703.
  11. Hermanns JF, Pierard-Franchimont C, Pierard GE. 2000. Skin colour assessment in safety testing of cosmetics. An overview. Int. J. Cosmet. Sci. 22: 67-71.
    Pubmed
  12. Davis AL, Cai Y, Davies AP, Lewis JR. 1996. 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 34:887-890.
  13. Hosoi J, Abe E, Suda T, Kuroki T. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474-1478.
  14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253-310.
    Pubmed
  15. Westerfield M. 1993. The zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio), pp. 385. Ed. 4. Ed. M. Westerfield, Eugene, OR.
  16. Choi TY, Kim JH, Ko DH, Kim CH, Hwang JS, Ahn S, et al. 2007. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res. 20: 120127.
    Pubmed
  17. Kim YJ, Uyama H. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspec tive for the future. Cell. Mol. Life Sci. 62: 1707-1723.
    Pubmed
  18. Costin GE, Hearing VJ. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21: 976994.
    Pubmed
  19. Yoon HS, Lee SR, Ko HC, Choi SY, Park JG, Kim JK, et al. 2007. Involvement of extracellular signal-regulated kinase in nobiletininduced melanogenesis in murine B16/F10 melanoma cells. Biosci. Biotechnol. Biochem. 71: 1781-1784.
    Pubmed
  20. Kim SS, Kim MJ, Choi YH, Kim BK, Kim KS, Park KJ, et al. 2013. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac. J. Ttrop. Biomed. 3: 617-622; discussion 621-612.
  21. Tuerxuntayi A, Liu YQ, Tulake A, Kabas M, Eblimit A, Aisa HA. 2014. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med. 14: 166.
    Pubmed KoreaMed
  22. Zhang X, Li J, Li Y, Liu Z, Lin Y, Huang JA. 2020. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 145: 104634.
    Pubmed
  23. Lall N, Kishore N, Momtaz S, Hussein A, Naidoo S, Nqephe M, et al. 2015. extract from Ceratonia siliqua exhibits depigmentation properties. Phytother. Res. 29: 1729-1736.
    Pubmed
  24. Fujimaki T, Mori S, Horikawa M, Fukui Y. 2018. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro. Food Chem. 248: 61-69.
    Pubmed
  25. Kim EH, Kim JE, Park SN. 2009. Antioxidative and antiaging effects of Persicaria hydropiper L. extracts. J. Soc. Cosmet. Sci. Korea 35: 293-300.
  26. Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. 2012. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33: 128-132.
    Pubmed
  27. Stanley KA, Curtis LR, Simonich SL, Tanguay RL. 2009. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat. Toxicol. 95: 355-361.
    Pubmed KoreaMed
  28. O'Reilly-Pol T, Johnson SL. 2008. Neocuproine ablates melanocytes in adult zebrafish. Zebrafish 5: 257-264.
    Pubmed KoreaMed
  29. Lajis AFB. 2018. A zebrafish embryo as an animal model for the treatment of hyperpigmentation in cosmetic dermatology medicine. Medicina 54: 35.
    Pubmed KoreaMed

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.