Article Search

Microbiology and Biotechnology Letters


View PDF

Food Microbiology (FM)  |  Bioactive Compounds or Metabolites: Function and Application

Microbiol. Biotechnol. Lett. 2021; 49(1): 32-38

Received: October 6, 2020; Accepted: November 28, 2020

Screening of Myxobacteria Carrying Tubulysin Biosynthetic Genes

Hyesook Hyun1, Juo Choi1, 2, Daun Kang2, Yungpil Kim2, Pilgoo Lee 2, Gregory Chung 2 and Kyungyun Cho1*

1Department of Biotechnology, Hoseo University, Asan 31499, Republic of Korea 2MECOX CureMed Co., Seoul 06744, Republic of Korea

Correspondence to :
Kyungyun Cho,

Tubulysins are a group of secondary metabolites produced by myxobacteria that inhibit the function of the eukayotic cytoskeleton. We developed a pair of PCR primers that specifically amplified tubulysin biosynthetic genes. Using these primers, eight out of the eighty-one strains of myxobacteria belonging to the Cystobacteraceae family that harbored putative tubulysin biosynthetic genes were screened through PCR analysis. The selected strains included two Archangium gephyra, two Stigmatella sp., two Vitiosangium cumulatum, and two unidentified myxobacteria. LC-MS analysis of the culture extracts from the selected strains revealed that A. gephyra KYC4066 produced putative tubulysin A and B.

Keywords: Archangium gephyra, myxobacteria, secondary metabolite, tubulysin

  1. Gerth K, Pradella S, Perlova O, Beyer S, Müller R. 2003. Myxobacteria:proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechol. 106: 233-253.
  2. Schaberle TF, Lohr F, Schmitz A, Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31: 953-972.
  3. Hyun H, Cho K. 2018. Secondary metabolites of myxobacteria. Korean J. Microbiol. 54: 175-187.
  4. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49: 560-563.
  5. Stein A. 2010. Ixabepilone. Clin. J. Oncol. Nurs. 14: 65-71.
  6. Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53: 879-885.
  7. Murray BC, Peterson MT, Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32: 654-662.
  8. Reddy JA, Dorton R, Bloomfield A, Nelson M, Dircksen C, et al. 2018. Pre-clinical evaluation of EC1456, a folate-tubulysin anticancer therapeutic. Sci. Rep. 8: 8943.
    Pubmed KoreaMed
  9. Szigetvari NM, Dhawan D, Ramos-Vara JA, Leamon CP, Klein PJ, Ruple AA, et al. 2018. Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturallyoccurring invasive urothelial carcinoma. Oncotarget 9: 3704237053.
    Pubmed KoreaMed
  10. Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Höfle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43:4888-4892.
  11. Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Müller R. 2010. Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol. 17: 296-309.
  12. Sandmann A, Sasse F, Müller R. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11: 10711079.
  13. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd Ed. Bergey's Manual Trust, East Lansing, MI, USA.
  14. Park S, Lee B, Kim J, Lee C, Jang E, Cho K. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32: 218-223.
  15. Hyun H, Chung J, Lee H, Youn J, Lee C, Kim D, et al. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Korean J. Microbiol. 45: 48-53.
  16. Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44-51.
  17. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46: 1088-1092.
  18. Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9.
    Pubmed KoreaMed
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
    Pubmed KoreaMed
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617.
    Pubmed KoreaMed
  21. Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178: 484-492.
  22. Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, et al. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3: 2101.
    Pubmed KoreaMed
  23. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.