Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Environmental Microbiology

Microbiol. Biotechnol. Lett. 2020; 48(2): 215-222

https://doi.org/10.4014/mbl.2001.01009

Received: January 14, 2020; Accepted: March 2, 2020

대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea

Jonghee Kim *

Seoil University, Republic of Korea

The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.

Keywords: Aestuariibacter, xylanase, marine bacterium, phylogenetic analysis, purification

  1. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
    Pubmed CrossRef
  2. Uday US, Choudhury P, Bandyopadhyay TK, Bhunia B. 2015. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82: 1041-1054.
    Pubmed CrossRef
  3. Wu H, Cheng X, Zhu Y, Zeng W, Chen G, Liang Z. 2018. Purification and characterization of a cellulase-free, thermostable endoxylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp. J. Biosci. Bioeng. 125:46-51.
    Pubmed CrossRef
  4. Duarte ME, Zhou FX, Dutra WM Jr, Kim SW. 2019. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. 5: 351-358.
    Pubmed KoreaMed CrossRef
  5. Alokika, Singh B. 2019. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 103: 8763-8784.
    Pubmed CrossRef
  6. Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanase and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338.
    Pubmed CrossRef
  7. Amaya-Delgado L, Mejia-Castillo T, Santiago-Hernandez A, Vega-Estrada J, Amelia FGS, Xoconostle-Cazares B, et al. 2010. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresour. Technol. 101: 5539-5545.
    Pubmed CrossRef
  8. Chi WJ, Park DY, Park JS, Hong SK. 2012. Isolation and characterization of a xylanolytic bacterium, Bacillus sp. MX47. Korean J. Microbiol. Biotechnol. 40: 419-423.
    CrossRef
  9. Lo LC, Chu CY, Pan YR, Wan CF, Li YK, Lin JJ. 2006. Rapid and selective isolation of beta-xylosidase through an activitybased chemical approach. Biotechnol. J. 2: 197-202.
    Pubmed CrossRef
  10. Shahid S, Tajwar R, Akhtar MW. 2018. A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities. Extremophiles 22: 109-119.
    Pubmed CrossRef
  11. Lyman J, Fleming RH. 1940. Composition of seawater. J. Mar. Res. 3: 134-146.
    CrossRef
  12. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555.
    Pubmed CrossRef
  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
    CrossRef
  14. Chun JS, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. Extaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.
    Pubmed CrossRef
  15. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 46734680.
    Pubmed KoreaMed CrossRef
  16. Felsenstein J. 2009. PHYLIP (phylogeny inference package), v3.69. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, USA.
  17. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  18. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed CrossRef
  19. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    Pubmed CrossRef
  20. Sasser M. 1997. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE:MIDI Inc.
  21. Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
    CrossRef
  22. Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.
    CrossRef
  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  24. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
    Pubmed CrossRef
  25. Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56: 658-666.
    CrossRef
  26. Wang Y, Wang H, Liu J, Lai Q, Shao Z, Austin B, et al. 2010. A. aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol. Lett. 309: 48-54.
    Pubmed CrossRef
  27. Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited:tarnished gold standards. Microbiol. Today 33: 152-155.
  28. Yi H, Bae KS, Chun J. 2004. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int. J. Syst. Evol. Microbiol. 54: 571-576.
    Pubmed CrossRef
  29. Tanaka N, Romanenko LA, Frolova GM, Mikhailov VV. 2010. Aestuariibacter litoralis sp. Nov., isolated from a sandy sediment of the Sea of Japan. Int. J. Syst. Evol. Microbiol. 60: 317-320.
    Pubmed CrossRef
  30. Jean WD, Hsu CY, Huang SP, Chen JS, Lin S, Su MH, Shieh WY. 2013. Reclassification of [Glaciecola] lipolytica and [Aestuariibacter] litoralis in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov., and Aliiglaciecola litoralis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 63: 2859-2864.
    Pubmed CrossRef
  31. Subramaniyan S, Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7.
    Pubmed CrossRef
  32. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW. 2006. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10: 295-300.
    Pubmed CrossRef
  33. Craig AD, Khattak F, Hastie P, Bedford MR, Olukosi OA. 2019. Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Br. Poult. Sci. 30: 1-9.
    Pubmed CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.