Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology / Microbial Diversity  |  Environmental Microbiology

Microbiol. Biotechnol. Lett. 2020; 48(2): 193-205

https://doi.org/10.4014/mbl.1912.12006

Received: December 14, 2019; Accepted: January 23, 2020

Application of Molecular Methods for the Identification of Acetic Acid Bacteria Isolated from Blueberries and Citrus Fruits

Liliana Mabel Gerard *, Cristina Verónica Davies , Carina Alejandra Soldá , María Belén Corrado and María Verónica Fernández

Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Alimentación.

Sixteen acetic acid bacteria (AAB) were isolated from blueberries and citric fruits of the Salto Grande region (Concordia, Entre Ríos, Argentina) using enrichment techniques and plate isolation. Enrichment broths containing ethanol and acetic acid enabled maximum AAB recovery, since these components promote their growth. Biochemical tests allowed classification of the bacteria at genus level. PCR-RFLP of the 16S rRNA and PCR-RFLP of the 16S-23S rRNA intergenic spacer allowed further classification at the species level; this required treatment of the amplified products of 16S and 16S-23S ITS ribosomal genes with the following restriction enzymes: AluI, RsaI, HaeIII, MspI, TaqI, CfoI, and Tru9I. C7, C8, A80, A160, and A180 isolates were identified as Gluconobacter frateurii; C1, C2, C3, C4, C5, C6, A70, and A210 isolates as Acetobacter pasteurianus; A50 and A140 isolates as Acetobacter tropicalis; and C9 isolate as Acetobacter syzygii. The bacteria identified by 16S rRNA PCR-RFLP were validated by 16S-23S PCR-RFLP; however, the C1 isolate showed different restriction patterns during identification and validation. Partial sequencing of the 16S gene resolved the discrepancy.

Keywords: Acetic Acid Bacteria, isolation, 16S rRNA Sequencing, PCR-RFLP, citric fruit, blueberries

  1. Andrés-Barrao C, Barja F, Ortega Pérez R, Chappuis M, Braito S, Hospital Bravo A. 2017. Identification techniques of acetic acid bacteria: comparison between MALDI-TOF MS and molecular biology techniques, pp. 162-192. In I.Y. Sengun (Ed), Acetic acid bacteria fundamentals and food applications. Boca Raton: CRC Press.
    CrossRef
  2. Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106.
    Pubmed CrossRef
  3. Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult Coll. 19: 91-99.
  4. Komagata K, Iino T, Yamada Y. 2014. The family Acetobacteraceae, pp. 547-577. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (Eds), The Prokaryotes - Alphaproteobacteria and Betaproteobacteria. Berlín: Springer-Verlag.
  5. Trček J, Barja F. 2015. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDITOF mass spectrometry. Int. J. Food Microbiol. 196: 137-144.
    Pubmed CrossRef
  6. Malimas T, Thi Lan Vu H, Muramatsu Y, Yukphan P, Tanasupawat S, Yamada Y. 2017. Systematics of acetic acid bacteria. In Sengun IY (Ed), Acetic acid bacteria fundamentals and food applications, Boca Raton: CRC Press, pp. 3-43.
    CrossRef
  7. Gomes RJ, Borges MF, Rosa MF, Castro-Gómez RJ, Spinosa WA. 2018. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol. 56:139-151.
    Pubmed KoreaMed CrossRef
  8. Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. 2019. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr. Rev. Food Sci. Food Saf. 18: 587625.
    CrossRef
  9. Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in ‘Traditional Balsamic Vinegar’. Int. J. Food Microbiol. 106: 209-212.
    Pubmed CrossRef
  10. Bou G, Fernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. 2011. Métodos de identificación bacteriana en el laboratorio de Microbiología. Enferm. Infecc. Microbiol. Clin. 29: 601-608.
    Pubmed CrossRef
  11. Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Barzegari A, et al. 2015. Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. J. Food Sci. Technol. 50: 1056-1064.
    CrossRef
  12. Ruiz A, Poblet M, Mas A, Guillamón M. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S23S rDNA intergenic spacer. Int. J. Syst. Evol. Microbiol. 50: 19811987.
    Pubmed CrossRef
  13. Vegas C, Mateo E, González A, Jara C, Guillamón JM, Poblet M, et al. 2010. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int. J. Food Microbiol. 138: 130136.
    Pubmed CrossRef
  14. Hidalgo C, Torija MJ, Mas M, Mateo E. 2013. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiol. 34: 88-94.
    Pubmed CrossRef
  15. Guillamón JM, Mas A. 2009. Acetic acid bacteria, pp. 31-46. In König H, Unden G, Fröhlich J (Eds), Biology of Microorganisms on Grapes, in Must and in Wine. Berlín: Springer-Verlag, Heidelberg.
    CrossRef
  16. González A, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222.
    Pubmed CrossRef
  17. Valera MJ, Laich F, González SS, Torija MJ, Mateo E., Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112.
    Pubmed CrossRef
  18. Seearunruangchai A, Tanasupawat S, Keeratipibul S, Thawai C, Itoh T, Yamada Y. 2004. Identification of acetic acid bacteria isolated from fruits collected in Thailand. J. Gen. Appl. Microbiol. 50:47-53.
    Pubmed CrossRef
  19. Romero-Cortes T, Robles-Olera V, Rodriguez-Jimenes G, RamírezLepe M. 2012. Isolation and characterization of acetic acid bacteria in cocoa fermentation. Afr. J. Microbiol. Res. 6: 339-347.
    CrossRef
  20. Sengun IY, Karabiyikli S. 2011. Importance of acetic acid bacteria in food industry. Food Control. 22: 647-656.
    CrossRef
  21. Gonzalez A, Hierro N, Poblet M, Rozes N, Mas A, Guillamon JM. 2004. Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J. Appl. Microbiol. 96: 853-860.
    Pubmed CrossRef
  22. González A, Hierro N, Poblet M, Mas A, Guillamón JM. 2005. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. Int. J. Food Microbiol. 102: 295-304.
    Pubmed CrossRef
  23. Kappeng K, Pathomaree W. 2009. Isolation of acetic acid bacteria from honey. J. Sci. Technol. 3: 71-76.
  24. Malimas T, Yukphan P, Lundaa T, Muramatsu Y, Takahashi M, Kaneyasu M, et al. 2009. Gluconobacter kanchanaburiensis sp. nov., a brown pigment-producing acetic acid bacterium for Thai isolates in the Alphaproteobacteria. J. Gen. Appl. Microbiol. 55:247-254.
    Pubmed CrossRef
  25. Yukphan, P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, et al. 2009. Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α-Proteobacteria. Biosci. Biotechnol. Biochem. 73: 2156-2162.
    Pubmed CrossRef
  26. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T. 2012. Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid nacteria isolated from stems of sugarcane, fruits , and a flower in Japan. J. Gen. Appl. Microbiol. 58: 235-243.
    Pubmed CrossRef
  27. Yamada Y, Yukphan P, Vu HT, Muramatsu Y, Ochaikul D, Nakagawa Y. 2012. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann. Microbiol. 62:849-859.
    CrossRef
  28. Slapsak N, Cleenwerck I, De Vos P, Trček J. 2013. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst. Appl. Microbiol. 36: 17-21.
    Pubmed CrossRef
  29. Yamada Y, Okada Y, Kondo K. 1976. Isolation and characterization of ‘polarly flagellated intermediate strains’ in acetic acid bacteria. J. Gen. Appl. Microbiol. 22: 237-245.
    CrossRef
  30. Tanasupawat S, Kommanee J, Malimas T, Yukphan P, Nakagawa Y, Yamada Y. 2009. Identification of Acetobacter, Gluconobacter, and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ. 24: 135-43.
    Pubmed CrossRef
  31. Hall T. 2011. BioEdit: An important software for molecular biology. J. Biosci. 2: 60-61.
  32. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X:Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
    Pubmed KoreaMed CrossRef
  33. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 33893402.
    Pubmed KoreaMed CrossRef
  34. Saitou N, Nei M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  35. Beheshti Maal K, Shafiee R. 2011. A thermotolerant Acetobacter strain isolated from iranian peach suitable for industrial microbiology. Asian J. Biol. Sci. 4: 244-251.
    CrossRef
  36. Giudici P, De Vero L, Gullo M. 2017. Vinegars, pp. 261-287. In Sengun IY (Ed), Acetic acid bacteria fundamentals and food applications, Boca Raton: CRC Press.
    CrossRef
  37. González A, Guillamón JM, Mas A, Poblet M. 2006. Application of molecular methods for routine identification of acetic acid bacteria. Int. J. Food Microbiol. 108: 141-146.
    Pubmed CrossRef
  38. Blasco Escrivá L. 2009. Aplicación de las técnicas Fish, PCR específica y 16S-ARDRA al estudio de la población bacteriana asociada al proceso de vinificación. (Tesis Doctoral). Universitat de València. Facultat de Ciències Biològiques. Departament de Microbiología i Ecología. Valencia, España.
  39. Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T. 2008. Identification of Acetobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 319-324.
    CrossRef
  40. Tanasupawat S, Kommanee J, Malimas T, Yukphan P, Nakagawa Y, Yamada Y. 2009. Identification of Acetobacter, Gluconobacter and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ. 24: 135-143.
    Pubmed CrossRef
  41. Thi Lan Vu H, Malimas T, Yukphan P, Potacharoen W, Tanasupawat S, Thanh Loan LT, et al. 2007. Identification of Thai isolates assigned to the genus Gluconobacter based on 16S-23S rDNA ITS restriction analysis. J. Gen. Appl. Microbiol. 53: 133-142.
    Pubmed CrossRef
  42. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047.
    Pubmed CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.