Article Search

Microbiology and Biotechnology Letters


View PDF

Fermentation Microbiology (FM)  |  Fermentation Technology

Microbiol. Biotechnol. Lett. 2021; 49(2): 210-216

Received: February 20, 2021; Revised: March 23, 2021; Accepted: March 24, 2021

CRISPR/CAS9을 이용하여 lipid elongation gene의 과발현을 통한 효모의 에탄올 발효능 개선

Enhancement of Ethanol Productivity with Saccharomyces cerevisiae by Overexpression of Lipid Elongation Gene Using CRISPR/CAS9

JinA Kim and Gwi-Taek Jeong*

Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea

Correspondence to :
Gwi-Taek Jeong,

This study aimed to enhance ethanol productivity of Saccharomyces cerevisiae through genome editing using CRISPR/CAS9. To increase ethanol productivity, ACC1, ELO1, and OLE1 were overexpressed in S. cerevisiae using the CRISPR/CAS9 system. The strains overexpressing ACC1, ELO1, and OLE1 survived up to 24 h in YPD medium supplemented with 18% ethanol. Moreover, the ethanol yields in strains overexpressing ACC1 (428.18 mg ethanol/g glucose), ELO1 (416.15 mg ethanol/g glucose), and OLE1 (430.55 mg ethanol/g glucose) were higher than those in the control strains (400.26 mg ethanol/g glucose). In conclusion, the overexpression of these genes increased the viability of S. cerevisiae at high ethanol concentrations and the ethanol productivity without suppressing glucose consumption.

Keywords: Ethanol fermentation, ethanol tolerance, lipid elongation gene, ethanol productivity

  1. Wheals AE, Basso LC, Alves DMG, Amorim HV. 1999. Fuel ethanol after 25 years. Trends Biotechnol. 17: 482-487.
  2. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenerg. 47: 395-401.
  3. Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK. 2013. Potential of bioethanol as a chemical building block for biorefineries:Preliminary sustainability assessment of 12 bioethanol-based products. Bioresour. Technol. 135: 490-499.
  4. Bharti B, Madhulika C. 2016. Bioethanol production using Saccharomyces cerevisiae with different perspectives: Substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. 5: 131-134.
  5. Liu Y, Nielsen J. 2019. Recent trends in metabolic engineering of microbial chemical factories. Curr. Opin. Biotechnol. 60: 188-197.
  6. Mojovic L, Pejin D, Rakin M, Pejin J, Nikolic S, Djukic-Vukovic A. 2012. How to improve the economy of bioethanol production in Serbia. Renew. Sustain. Energ. Rev. 16: 6040-6047.
  7. Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86: 2273-2282.
  8. Stovicek V, Borodina I, Forste Jn. 2015. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2: 13-22.
  9. Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. 2017. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth. Syst. Biotechnol. 2: 219-225.
    Pubmed KoreaMed
  10. Chin YW, Kang WK, Jang HW, Turner TL, Kim HJ. 2016. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 43: 1517-1525.
  11. Zhao XQ, Bai FW. 2009. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production J. Biotechnol. 144: 23-30.
  12. Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl. Environ. Microbiol. 75: 5761-5772.
    Pubmed KoreaMed
  13. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AA, et al. 2017. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10: 52-61.
    Pubmed KoreaMed
  14. Casey GP, Ingledew WM. 1985. Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 13: 219-280.
  15. Li P, Fu X, Zhang L, Li S. 2019. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microbiol. Biotechnol. 12: 1154-1163.
    Pubmed KoreaMed
  16. Kajiwara S, Aritomi T, Suga K, Ohtaguchi K, Kobayashi O. 2000. Overexpression of the OLE1gene enhances ethanol fermentation by Saccharomyces cerevisiae. Microbiol. Biotechnol. 53: 568-574.
  17. Ingram LO. 1990. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9: 305-319.
  18. Torija MJ, Beltran G, Novo M, Poblet M, Guillamón JM, Mas A, et al. 2003. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 85: 127-136.
  19. Alexandre H, Rousseaux I, Charpentier C. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculate. FEMS Microbiol. Lett. 124: 17-22.
  20. Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta 1771: 255-270.
  21. Dittrich F, Zajonc D, Hühne K, Hoja U, Ekici A, Greiner E, et al. 1988. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252: 477-485.
  22. Schirmaier F, Philippsen P. 1984. Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae. EMBO J. 3: 3311-3315.
    Pubmed KoreaMed
  23. Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, et al. 1998. Utilization of the TEF1-α gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB in Aspergillus oryzae. Microbiol. Biotechnol. 50: 85-92.
  24. Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, et al. 2015. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 1601-1609.
    Pubmed KoreaMed
  25. Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H. 2015. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Basic Microbiol. 55: 1417-1426.
  26. Beaven MJ, Charpentier C, Rose AH. 1982. Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J. Gen. Microbiol. 128: 14471455.
  27. Dong SJ, Yi CF, Li H. 2015. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Int. J. Biochem. Cell Biol. 69:196-203.
  28. Lewis JA, Elkon IM, McGee MA, Gasch AP. 2010. Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186: 1197-1205.
    Pubmed KoreaMed
  29. Yan GL, Duan LL, Liu PT, Duan CQ. 2019. Transcriptional comparison investigating the influence of the addition of unsaturated fatty acids on aroma compounds during alcoholic fermentation. Front. Microbiol. 10: 1115.
    Pubmed KoreaMed
  30. Caspeta L, Castillo T, Nielsen J. 2015. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol. 3:184.
    Pubmed KoreaMed
  31. van Uden N. 1985. Chapter 2 - Ethanol toxicity and ethanol tolerance in yeasts. Ann. Rep. Ferment. Processes 8: 11-58.
  32. Salgueiro SP, Correia IS, Novais JM. 1988. Ethanol-induced leakage in Saccharomyces cerevisiae: Kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Environ. Microbiol. 54: 903-909.
    Pubmed KoreaMed

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.