Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Bioactive Compounds / Food Microbiology  |  Bioactive compounds and Physiological properties

Microbiol. Biotechnol. Lett. 2019; 47(3): 323-331

https://doi.org/10.4014/mbl.1811.11008

Received: November 27, 2018; Accepted: January 17, 2019

Lactobacillus rhamnosus BHN-LAB 76로 발효한 흰목이버섯 (Tremella fuciformis Berk) 추출물의 항비만 및 항당뇨 효과

Anti-obesity and anti-diabetic effects of the fermented ethanol extracts from white jelly fungus (Tremella fuciformis Berk) with Lactobacillus rhamnosus BHN-LAB 76

Yeo-Cho Yoon 1, 2, Byung-Hyuk Kim 1, Jung-Gyu Kim 1, 2, Jun-Hyeong Lee 1, 2, Ye-Eun Park 1, Hye-Suk Park 1, Hak-Soo Hwang 3, Gi-Seok Kwon 2 and Jung Bok Lee 1*

1Institute for Development of Bioindustrial Materials, BHNBIO Co., LTD., Chungbuk 18150, Korea, 2Department of Medicinal Plant Resources, Andong National University, Gyeongbuk 36729, Korea, 3Kyochon F&B Co., LTD., Gyeonggi-do, 38952, Korea

White jelly fungus (Tremella fuciformis Berk; TF) has been used as a traditional medicine in Asia and known to prevent hypertension, aging, cancer, and arteriosclerosis. This study aimed to investigate the effects of the anti-diabetic effects of FTF, ethanol extracts fermented with L. rhamnosus BHN-LAB 76. We show that FTF increases ?-glucosidase inhibitory activity and suppress adipogenesis of 3T3-L1 adipocytes. These inhibitory effects of FTF are accompanied by regulating phosphorylation of AMPK, JNK, and Akt. Together these data demonstrate that TF fermented with lactic acid bacteria not only inhibits adipogenesis by affecting the adipogenic signaling but also increases anti-diabetic effects by regulating insulin signaling pathway. Therefore, we suggest that the FTF can be used for the functional food and cosmetics materials.

Keywords: Anti-obesity activity, anti-diabetic activity, biological activity, lactic acid bacteria, Tremella fuciformis Berk

  1. King H, Aubert RE, Herman WH. 1998. Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections. Diabetes Care. 21: 1414-1431.
    Pubmed CrossRef
  2. Kim SG, Choi DS. 2009. Epidemiology and current status of diabetes in Korea. Hanyang Med. Rev. 29: 122-129.
  3. Chait A, Brunzell JD. 1996. Diabetes, lipids, and atherosclerosis, pp. 467-469. In LeRoith D, Taylor SI, Olefsky JM (eds.), Diabetes Mellitus, Lippincott-Raven Publishers, Philadelphia.
  4. Toeller M. 1991. Diet therapy of diabetes mellitus. Fortschr. Med. 41: 41-42.
  5. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care. 16: 29-39.
    Pubmed CrossRef
  6. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. 2001. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286: 1218-1227.
    Pubmed CrossRef
  7. Bhatt S, Mahesh R, Gampa G. 2011. An overview on recent advances in diabetes mellitus therapy. Int. J. Pharm. Fron. Res. 1: 84-100.
  8. Hanefeld M. 1998. The role of acarbose in the treatment of noninsulin-dependent diabetes mellitus. J. Diabetes Complications 12: 228-237.
    CrossRef
  9. Jang MJ, Rhee SJ. 2004. Hypoglycemic effects of pills made of mulberry leaves and silkworm powder in streptozotocininduced diabetic rats. J. Korean Soc. Food Sci. Nutr. 33: 1611-1617.
    CrossRef
  10. Ham IH, Jeong ES, Lee BH, Choi HY. 2008. The study on antihypertensive and anti-diabetic effect of Moriramulus. Korean J. Herbology 23: 203-212.
  11. Kim OK. 2008. Antidiabetic and antioxidative effects of Lycii fructus in streptozotocin-induced diabetic rats. Korean J. Pharmacogn. 23: 73-82.
  12. Lee K-J, Ham I-H, Bu Y-M, Kim H-C, Choi H-Y. 2008. Antidiabetic effect of Glechoma longituba (Nakai) Kupr in diabetic rats induced by streptozotocin. Korean J. Herbology 23: 175-180.
  13. Andrade-Cetto A, Wiedenfeld H. 2001. Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol. 78: 145-149.
    CrossRef
  14. Farkes L. 1998. Active principles of plants of traditional medicine as models of new drugs. J. Ethnopharmacol. 2: 45-48.
  15. Vetrichelvan T, Jegadeesan M. 2002. Anti-diabetic activity of alcoholic extract of Aerva lanata (L.) Juss. ex Schultes in rats. J. Ethnopharmacol. 80: 103-107.
    CrossRef
  16. Oh Y-H, Kim S-B, Lee G-W, Kim H-Y, Shim M-J, Rho H-S, et al. 2006. The immunomodulatory and antitumor effects of crude polysaccharides extracted from Tremella fuciformis. Korean J. Mycol. 34: 105-111.
    CrossRef
  17. Ko MS. 2012. The growth level of hair follicles and hairs about stress-induced mice of Tremella fuciformis Berk. J. Korean Soc. Cosm. 18: 1158-1165.
  18. Cheng H-H, Hou W-C, Lu M-L. 2002. Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without nebacitin. J. Agric. Food Chem. 50: 7438-7443.
    Pubmed CrossRef
  19. Cheung PCK. 1996. The hypocholesterolemic effects of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypocholes-terolemic rats. Nutr. Res. 16: 1721-1725.
    CrossRef
  20. Ko MS, Lee SJ, Kang SM. 2009. Effect of Tremella fuciformis Berk on anti stress activities during long-term and short-term in mice. KSBB J. 24: 131-139.
  21. Li H, Lee HS, Kim SH, Moon B, Lee C. 2014. Antioxidant and anti-inflammatory activities of methanol extracts of Tremella fuciformis and its major phenolic acids. J. Food Sci. 79: C460-C468.
    Pubmed CrossRef
  22. Shi Z-W, Liu Y, Xu Y, Hong Y-R, Liu Q, Li X-L, et al. 2014. Tremella Polysaccharides attenuated sepsis through inhibiting abnor mal CD4+CD25high regulatory T cells in mice. Cell. Immunol. 288: 60-65.
    Pubmed CrossRef
  23. Lee KH, Park HS, Yoon IJ, Shin YB, Baik YC, Kooh DH, et al. 2016. Whitening and anti-wrinkle effects of Tremella fuciformis extracts. Korean J. Med. Crop Sci. 24: 38-46.
    CrossRef
  24. Chen FF, Cai DL. 2008. Research advances in primary biological effects of Tremella polysaccharides. J. Integr. Med. 6: 862-866.
    Pubmed CrossRef
  25. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474.
    Pubmed CrossRef
  26. Kanmani P, Kumar RS, Yuvaraj N, Paari KA, Pattukumar V, Arul V. 2013. Probiotics and its functionally valuable products-A review. Crit. Rev. Food Sci. Nutr. 53: 641-658.
    Pubmed CrossRef
  27. Jeon J-M, Choi S-K, Kim Y-J, Jang S-J, Cheon J-W, Lee H-S. 2011. Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J. Soc. Cosmet. Scientists Korea 37: 75-81.
  28. Lee KH, Rhee K-H, Kim B-S, Choi Y-H, Kim C-H. 2013. Sleep inducing effect of Gastrodia elata fermented with lactic acid bacteria. Korean J. Pharmacogn. 44: 281-285.
  29. Lee J-B, Bae J-S, Son I-K, Jeon C-P, Lee E-H, Joo W-H, et al. 2014. Antioxidant and ACE inhibiting activities of sugared-buchu (Allium ampeloprasum L. var. porum J. Gay) fermented with lactic acid bacteria. J. Life Sci. 24: 671-676.
    CrossRef
  30. Yoon Y-C, Kim B-H, Kim J-K, Lee J-H, Park Y-E, Kwon G-S, et al. 2018. Verification of biological activities and tyrosinase inhibition of ethanol extracts from Hemp seed (Cannabis sativa L.) fermented with lactic acid bacteria. J. Life Sci. 28: 688-696.
  31. Tibbot BK, Skadsen RW. 1996. Molecular cloning and characterization of a gibberellin-inducible, putative α-glucosidase gene from barley. Plant Mol. Biol. 30: 229-241.
    Pubmed CrossRef
  32. Lee KJ, Gu MJ, Roh JH, Jung PM, Ma JY. 2013. Quantitative analysis of bioconversion constituents of Insampeadock-san using various fermented bacteria. Yakhak Hoeji 57: 167-172.
  33. Lee KJ, Song NY, Roh JH, Liang C, Ma JY. 2013. Analysis of bioconversedcomponents in fermented Jaeumganghwa-tang by Lactobacillus. J. Appl. Biological Chem. 56: 131-135.
    CrossRef
  34. Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, et al. 2008. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr. Res. 343: 1278-1281.
    Pubmed CrossRef
  35. Baron AD. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40: S51-S55.
    CrossRef
  36. Kim KK, Kang YH, Kim DJ, Kim TW, Choe M. 2013. Comparison of antioxidant, α-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts of Smilax china L. J. Nutr. Health 46: 315-323.
    CrossRef
  37. Lee E-W, Kim T, Kim H-S, Park Y-M, Kim S-H, Im M-H, et al. 2015. Antioxidant and α-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions. Korean J. Food Preserv. 22: 275-280.
    CrossRef
  38. Park Y-E, Kim B-H, Yoon Y-C, Kim J-K, Lee J-H, Kwon G-S, et al. 2018. Total polyphenol contents, flavonoid contents, and antioxidant activity of roasted-flaxseed extracts based on lacticacid bacteria fermentation. J. Life Sci. 28: 547-554.
  39. Lee J-H, Yoon Y-C, Kim J-K, Park Y-E, Hwang H-S, Kwon G-S, et al. 2018. Antioxidant and whitening effects of the fermentation of barley seeds (Hordeum vulgare L.) using lactic acid bacteria. J. Life Sci. 28: 444-453.
  40. Song M-Y, Bose S, Kim H-J. 2013. Effect of probiotics-fermented samjunghwan on differentiation in 3T3-L1 preadipocytes. J. Korean Soc. Food Sci. Nutr. 42: 1-7.
    CrossRef
  41. Blüher M, Patti M-E, Gesta S, Kahn BB, Kahn CR. 2004. Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knockout mice is associated with differences in patterns of gene expression. J. Biol. Chem. 279: 31891-31901.
    Pubmed CrossRef
  42. Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3: 25-38.
    CrossRef
  43. Sluss HK, Han Z, Barrett T, Davis RJ, Ip YT. 1996. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes & Dev. 10: 2745-2758.
    Pubmed CrossRef
  44. Ji SY, Jeon KY, Jeong JW, Hong SH, Huh MK, Choi YH, et al. 2017. Ethanol extracts of mori folium inhibit adipogenesis through activation of AMPK signaling pathway in 3T3-L1 preadipocytes. J. Life Sci. 27: 155-163.
    CrossRef
  45. Kim J, Park J, Jun W. 2014. Anti-obesity effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. in 3T3-L1 cells. J. Korean Soc. Food Sci. Nutr. 43: 1681-1687.
    CrossRef

Starts of Metrics

Share this article on :

Related articles in MBL

Most Searched Keywords ?

What is Most Searched Keywords?

  • It is most registrated keyword in articles at this journal during for 2 years.