Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Bioactive Compounds / Food Microbiology  |  Food Biotechnology

Microbiol. Biotechnol. Lett. 2020; 48(1): 1-11

https://doi.org/10.4014/mbl.1907.07006

Received: July 10, 2019; Accepted: November 13, 2019

Effects of the Mixed Fermentation of Torulaspora delbrueckii and Saccharomyces cerevisiae on the Non-Volatile and Volatile Compounds and the Antioxidant Activity in Golden Dried Longan Wine

Kanokchan Sanoppa 1, Tzou-Chi Huang 2 and Ming-Chang Wu 1*

1Department of Food science, College of Agriculture, National Pingtung University of Science and Technology, 2Department of Biological Science and Technology, College of Agriculture, National Pingtung University of Science and Technology, 3Department of Food science, College of Agriculture, National Pingtung University of Science and Technology

The aim of this study was to investigate the effects of Torulaspora delbrueckii and Saccharomyces cerevisiae, as pure fermenters and mixed fermenters (simultaneous and sequential culture), on the production of nonvolatiles and volatiles, and on the antioxidant activity in Golden Dried Longan juice and Golden Dried Longan wines. Alanine, arginine, glutamic acid, leucine, proline, and gamma-aminobutyric acid (GABA) were the most prominent amino acids that were found in these wines. The Golden Dried Longan Wine fermented with monocultures of S. cerevisiae and T. delbrueckii produced a total volatile aroma content of 393.21 mg/l and 383.20 mg/l, respectively. Simultaneous culture of the two organisms produced the highest total volatile aroma content, that affected most volatile compounds including isobutanol, ethyl acetate, ethyl decanoate, ethyl heptanoate, ethyl hexanoate, ethyl pentanoate, isoamyl acetate, and isobutyl acetate. Of the four treatments, the sequential culture possessed the highest total phenolic content (5.80 mg gallic acid equivalents (GAE)/ml). In addition, the total phenolic content significantly correlated with the antioxidant activity of the Golden Dried Juice and Golden Dried Longan Wine. These results suggest that co-cultures of the two organisms used in the production of the Golden Dried Longan Wine may improve the intensity and complexity of its aroma.

Keywords: Torulaspora delbrueckii, Saccharomyces cerevisiae, simultaneous, sequential, antioxidant activity

  1. Chang CY, Chang CH, Yu TH, Lin LY, Yen YH. 1998. The effect of drying treatment on the flavour and quality of longan fruit. Food Flavours: Formation Analysis and Packaging Influences 40: 353-367.
    CrossRef
  2. Azzolini M, Fedrizzi B, Finato F, Vagnoli P, Scrinzi C. 2012. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur. Food Res. Technol. 235: 303-313.
    CrossRef
  3. Azzolini M, Tosi E, Lorenzini M, Finato F, Zapparoli G. 2015. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 31: 277-293.
    Pubmed CrossRef
  4. Renault P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A, et al. 2009. Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. Int. J. Food Microbiol. 134: 201-210.
    Pubmed CrossRef
  5. Hansen EH, Nissen P, Sommer P, Nielsen JC, Arneborg N. 2001. The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J. Appl. Microbiol. 91: 541-547.
    Pubmed CrossRef
  6. Renault P, Coulon J, Barbe JC, Bely M. 2015. Increase of fruity aroma during mixed T.delbrueckii/S.cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 207: 40-48.
    Pubmed CrossRef
  7. Zhang BQ, Luan Y, Duan CQ, Yan GL. 2018. Use of Torulaspora delbrueckii Co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile. Front. Microbiol. 9: 606.
    Pubmed KoreaMed CrossRef
  8. Surin S, Thakeow P, Seesuriyachan P, Angeli S, Phimolsiripol Y. 2014. Effect of extraction and concentration processes on properties of longan syrup. J. Food Sci. Technol. 51: 2062-2069.
    Pubmed KoreaMed CrossRef
  9. Trinh TTT, Woon WY, Yu B, Liu SQ. 2010. Effect of L-isoleucine and L-phenylalanine addition on aroma compound formation during longan juice fermentation by a co-culture of Saccharomyces cerevisiae and Williopsis saturnus. S. Afr. J. Enol. Vitic. 31: 116-124.
    CrossRef
  10. Trinh TTT, Yu B, Curran P, Liu SQ. 2012. Formation of aroma compounds during longan juice fermentation by Williopsis saturnus var. saturnus with the addition of selected amino acids. J. Food Process Preserv. 36: 198-206.
    CrossRef
  11. Liu G, Sun J, He X, Tang Y, Li J, Ling D, et al. 2018. Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine. Food Chem. 256: 268-279.
    Pubmed CrossRef
  12. Chen D, Liu SQ. 2014. Chemical and volatile composition of lychee wines fermented with four commercial Saccharomyces cerevisiae yeast strains. Int. J. Food Sci. Tech. 49: 521-530.
    CrossRef
  13. Waters C. 1993. Waters AccQ. Tag Chemistry Package (Instruction Manual), pp. 1-5. Ed. Millipore Corporation, Milford, MA, USA.
  14. Zeng F, Ou J, Huang Y, Li Q, Xu G, Liu Z, et al. 2015. Determination of 21 free amino acids in fruit juices by HPLC using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method. Food Anal. Methods 8: 428-437.
    CrossRef
  15. Nuengchamnong N, Ingkaninan K. 2010. On-line HPLC-MSDPPH assay for the analysis of phenolic antioxidant compounds in fruit wine: Antidesma thwaitesianum Muell. Food Chem. 118: 147-152.
    CrossRef
  16. Buyuktuncel E, Porgalı E, Colak C. 2014. Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food Nutr. Sci. 5: 1660-1667.
    CrossRef
  17. Chen D, Liu SQ. 2016. Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT-Food Sci. Technol. 65: 53-61.
    CrossRef
  18. Ingledew WM, Magnus CA, Sosulski FW. 1987. Influence of oxygen on proline utilization during the wine fermentation. Am. J. Enol. Vitic. 38: 246-248.
  19. Brandriss MC, Falvey DA. 1992. Proline Biosynthesis in Saccharomyces cerevisiae: Analysis of the PRO3 gene, which encodes Δ1Pyrroline-5-carboxylate reductase. J. Bacteriol. 174: 3782-3788.
    Pubmed KoreaMed CrossRef
  20. Tomenchok DM, Brandriss MC. 1987. Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J. Bacteriol. 169: 5364-5372.
    Pubmed KoreaMed CrossRef
  21. Brandriss MC. 1983. Proline utilization in Saccharomyces cerevisiae:Analysis of the cloned PUT2 gene. Mol. Cell. Biol. 3: 1846-1856.
    Pubmed KoreaMed CrossRef
  22. Takagi H. 2008. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 81: 211-223.
    Pubmed CrossRef
  23. Degols G, Jauniaux JC, Wiame JM. 1987. Molecular characterization of transposable-element-associated mutations that lead to constitutive L-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur. J. Biochem. 165: 289-296.
    Pubmed CrossRef
  24. Sumrada RA, Cooper TG. 1984. Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and Its transcription under various physiological conditions. J. Bacteriol. 160: 1078-1087.
    Pubmed KoreaMed CrossRef
  25. Arslan E, Celik ZD, Cabaroglu T. 2018. Effects of pure and mixed autochthonous Torulaspora delbrueckii and Saccharomyces cerevisiae on fermentation and volatile compounds of narince wines. Foods 7: 1-12.
    Pubmed KoreaMed CrossRef
  26. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS. 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11: 139-173.
    CrossRef
  27. Lee PR, Ong YL, Yu B, Curran P, Liu SQ. 2010. Evolution of volatile compounds in papaya wine fermented with three Willopsis saturnus yeasts. Int. J. Food Sci. Techol. 45: 2032-2041.
    CrossRef
  28. Zhang J, Zhang C, Qi Y, Dai L, Ma H, Guo X, et al. 2014. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2. Genet. Mol. Res. 4: 9735-9746.
    Pubmed CrossRef
  29. Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS. 2006. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23: 641-659.
    Pubmed CrossRef
  30. Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM. 2010. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbe. Biotechnol. 3: 165-177.
    Pubmed KoreaMed CrossRef
  31. Saerens SMG, Verstrepen KJ, Van Laere SDM, Voret ARD, Dijck PV, Delvaux FR, et al. 2005. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem. 281: 4446-4456.
    Pubmed CrossRef
  32. Äyräpää T, Lindström I. 1977. Aspects of the influence of exogenous fatty acids on the fatty acid metabolism of yeast. Proc. Eur. Brew Conv. 16: 507-517.
  33. Moreno-Arribas MV, Polo M. 2009. Wine Chemistry and Biochemistry. pp. 463-496. Ed. Springer, New York.
    CrossRef
  34. Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, Freitas V. 2017. Wine flavonoids in health and disease prevention. Molecules 22: 292.
    Pubmed KoreaMed CrossRef
  35. Kelebek H, Selli S. 2014. Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. J. Food Sci. Technol. 51: 1094-1101.
    Pubmed KoreaMed CrossRef
  36. Akalin AC, Bayram M, Anli RE. 2017. Antioxidant phenolic compounds of pomegranate wines produced by different maceration methods. J. Inst. Brew. 124: 38-44.
    CrossRef
  37. Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. 2015. In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J. Acupunct. Meridian Stud. 3: 112-118.
  38. Lorenzo CD, Badea M, Colombo F, Orgiu F, Frigerio F, Pastor RF, et al. 2017. Antioxidant activity of wine assessed by different in vitro methods. BIO Web of Conferences. 9: 1-6.
    CrossRef
  39. Rajurkar NS, Hande SM. 2011. Estimation of phytochemical content and antioxidant activity of some selected traditional indian medicinal plants. Ind. J. Pharm. Sci. 73: 146-151.
    Pubmed KoreaMed CrossRef
  40. Marcuse R. 1960. Antioxidative effect of amino-acids. Nature 186: 886-887.
    Pubmed CrossRef
  41. Takagi H, Taguchi J, Kaino T. 2016. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phasefrom ethanol stress by reducing reactive oxygen specie. Yeast 33: 355-363.
    Pubmed CrossRef
  42. Mocchegiani E, Straub RH. 2004. Possible new anti-ageing strategies related to neuroendocrine-immune interactions. NeuroImmune Biol. 4: 399-407.
    CrossRef
  43. Schnuck JK, Sunderland KL, Kuennen MR, Vaughan RA. 2016. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle. J. Exerc. Nutr. Biochem. 20: 34-41.
    Pubmed KoreaMed CrossRef
  44. Diana M, Quílez J, Rafecas M. 2014. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods 10: 407-420.
    CrossRef
  45. Guth H. 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 45: 3027-3032.
    CrossRef
  46. Cullere L, Escudero A, Cacho J, Ferreira V. 2004. Gas chromatographyolfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines. J. Agric. Food Chem. 52: 1653-1660.
    Pubmed CrossRef
  47. Casassa LF, Sari SE, Bolcato EA, Diaz-Sambueza MA, Catania AA, Fanzone ML, et al. 2019. Chemical and sensory effects of cold soak, whole cluster fermentation, and stem additions in pinot noir wines. Am. J. Enol. Vitic. 70: 19-33.
    CrossRef

Starts of Metrics

Share this article on :

  • mail

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.