Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Environmental Microbiology  |  Biodegradation and Bioremediation

Microbiol. Biotechnol. Lett. 2020; 48(4): 547-555

https://doi.org/10.48022/mbl.2008.08017

Received: September 2, 2020; Accepted: October 13, 2020

미세조류 4종의 성장, CO2 동화 및 지질 생성 특성

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species

Chae Yoon Shin, Young Jin Noh, So-Yeon Jeong* and Tae Gwan Kim*

Department of Microbiology, Pusan National University, Pusan 46241, Republic of Korea

Correspondence to :
So-Yeon Jeong,     jeongsy@pusan.ac.kr
Tae Gwan Kim,       tkim@pusan.ac.kr

Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.

Keywords: Microalgae, biomass, CO2 assimilation, lipid production

  1. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14: 217-232.
    CrossRef
  2. Williams PJlB, Laurens LM. 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590.
    CrossRef
  3. Shetty P, Gitau MM, Maróti G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1-16.
    Pubmed KoreaMed CrossRef
  4. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102:71-81.
    Pubmed CrossRef
  5. Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R. 2017. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal. Res. 21: 138-147.
    CrossRef
  6. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28: 371-380.
    Pubmed CrossRef
  7. Zeng X, Danquah MK, Chen XD, Lu Y. 2011. Microalgae bioengineering:from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev. 15: 3252-3260.
    CrossRef
  8. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, et al. 2019. Microalgaebased wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 291: 121934.
    Pubmed CrossRef
  9. Leong YK, Chang J-S. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 303: 122886.
    Pubmed CrossRef
  10. Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. 2012. Presented at the Proceedings of the world congress on engineering.
  11. Dimitrova P, Marinova G, Alexandrov S, Iliev I, Pilarski P. 2017. Presented at the Youth Scientific Conference, Sofia 2016.
  12. Lakshmikandan M, Murugesan A, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. 2020. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 247: 119398.
    CrossRef
  13. Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.
    CrossRef
  14. Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. 2013. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139: 149-154.
    Pubmed CrossRef
  15. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804.
    Pubmed CrossRef
  16. Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sust. Energ. Rev. 35: 265-278.
    CrossRef
  17. Sun L-Y, Cui W-J, Chen K-M. 2018. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energ. Source Part A. 40: 1452-1460.
    CrossRef
  18. Saadaoui I, Cherif M, Rasheed R, Bounnit T, Al Jabri H, Sayadi S, et al. 2020. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal. Res. 51: 102021.
    CrossRef
  19. Hu C-W, Chuang L-T, Yu P-C, Chen C-NN. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138: 2071-2078.
    Pubmed CrossRef
  20. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2020. Twophase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresour. Technol. Rep. 9: 100366.
    CrossRef
  21. Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008.
    CrossRef
  22. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77: 41-47.
    Pubmed CrossRef
  23. Hanagata N, Malinsky‐Rushansky N, Dubinsky Z. 1999. Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycol Res. 47: 263-269.
    CrossRef
  24. Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autosporeforming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117: 257-264.
    CrossRef
  25. Goecke F, Noda J, Paliocha M, Gislerød HR. 2020. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotechnol. 36: 149.
    Pubmed KoreaMed CrossRef
  26. Khoshmanesh A, Lawson F, Prince IG. 1997. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng. 65: 13-19.
    CrossRef
  27. Sunda WG, Huntsman SA. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392.
    CrossRef
  28. Chen F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426.
    CrossRef
  29. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213.
    CrossRef
  30. Singh S, Singh P. 2014. Effect of CO2 concentration on algal growth: a review. Renew. Sust. Energ. Rev. 38: 172-179.
    CrossRef
  31. Abou-Shanab RA, Hwang J-H, Cho Y, Min B, Jeon B-H. 2011. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energ. 88: 3300-3306.
    CrossRef
  32. Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593.
    CrossRef
  33. Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P. 2015. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188: 177-184.
    Pubmed CrossRef
  34. Sung K-D, Lee J-S, Shin C-S, Park S-C, Choi M-J. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour. Technol. 68: 269-273.
    CrossRef
  35. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry. 31: 3345-3348.
    CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.