Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Fermentation Microbiology  |  Applied Microbiology

Microbiol. Biotechnol. Lett. 2020; 48(4): 515-524

https://doi.org/10.48022/mbl.2004.04007

Received: April 17, 2020; Accepted: July 13, 2020

Isolation of a Lipolytic and Proteolytic Bacillus licheniformis from Refinery Oily Sludge and Optimization of Culture Conditions for Production of the Enzymes

Sashi Prava Devi and Dhruva Kumar Jha*

Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India

Correspondence to :
Dhruva Kumar Jha,    dkjhabot07@gmail.com

With the increasing demand for enzymes in industrial applications there is a growing need to easily produce industrially important microbial enzymes. This study was carried out to screen the indigenous refinery bacterial isolates for their production of two industrially important enzymes i.e. lipase and protease. A total of 15 bacterial strains were isolated using Soil Extract Agar media from the oil-contaminated environment and one was shown to produce high quality lipase and protease enzymes. The culture conditions (culture duration, temperature, source of nitrogen, carbon, and pH) were optimized to produce the optimum amount of both the lipase (37.6 ± 0.2 Uml-1) and the protease (41 ± 0.4 Uml-1) from this isolate. Productivity of both enzymes was shown to be maximized at pH 7.5 in a medium containing yeast extract and peptone as nitrogen sources and sucrose and galactose as carbon sources when incubated at 35 ± 1℃ for 48 h. Bacterial strain SAB06 was identified as Bacillus licheniformis (MT250345) based on biochemical, morphological, and molecular characteristics. Further studies are required to evaluate and optimize the purification and characterization of these enzymes before they can be recommended for industrial or environmental applications.

Keywords: Bacillus licheniformis, refinery sludge, enzymes, optimization, cultural conditions., Lipase

  1. Bhattacharyya JK, Shekdar AV. 2003. Treatment and disposal of refinery sludges: Indian scenario. Waste Manag. Res. 21: 249-261.
    Pubmed CrossRef
  2. Patil KJ, Chopda MZ, Mahajan RT. 2011. Lipase biodiversity. Indian J. Sci. Technol. 4: 971-982.
    CrossRef
  3. Sahu GK, Martin M. 2011. Optimization of growth conditions for the production of extracellular lipase by bacterial strains from dairy industry effluents. Biotechnol. Bioinf. Bioeng. 1: 305-311.
  4. Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251.
    CrossRef
  5. Bharathi D, Rajalakshmi G, Komathi S. 2018. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. J. King Saud. Univ. Sci. 31: 1-4.
    CrossRef
  6. Salihu A, Alam MZ, AbdulKarim MI, Salleh HM. 2012. Lipase production:an insight in the utilization of renewable agricultural residues. Resour. Conserv. Recy. 58: 36-44.
    CrossRef
  7. Jaeger KE, Ransac S, Dijkstra BW, Colson C, Heuvel M, Misset O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63.
    Pubmed CrossRef
  8. Bajpai P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Progr. 15: 147-157.
    Pubmed CrossRef
  9. Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662.
    CrossRef
  10. Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.
    Pubmed CrossRef
  11. Pandey A, Benjamin S, Soccol CRP, Nigam, Krieger N, Soccol VT. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119-131.
  12. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
    Pubmed KoreaMed CrossRef
  13. Karigar CS, Rao SS. 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. 2011: 805187.
    Pubmed KoreaMed CrossRef
  14. Kumar M, Rejitha R, Devika S, Balakumaran MD, Immaculate NR, Kalaichelvan PT. 2012. Production, optimization and purification of lipase from Bacillus sp. MPTK 912 isolated from oil mill effluent. Adv. Appl. Sci. Res. 3: 930-938.
  15. Nigam P. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3: 597-611.
    Pubmed KoreaMed CrossRef
  16. Sarker PK, Talukdar SA, Deb P, Sayem SA, Moshina K. 2013. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. SpringerPlus. 2: 506.
    Pubmed KoreaMed CrossRef
  17. Puri S, Beg QK, Gupta R. 2002. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Micobiol. 44: 286-290.
    Pubmed CrossRef
  18. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, et al. 2005. Isolation of novel bacteria and actinomycetes using soilextract agar medium, J. Biosci. Bioeng. 99: 485-492.
    Pubmed CrossRef
  19. Lee LP, Karbul HM, Citartan M, Gopinath SCB, Lakshmipriya, Tang TH. 2015. Lipase-secreting Bacillus species in an oil-contaminated habitat: Promising strains to alleviate oil pollution. BioMed. Res. Int. 2015: 820575.
    Pubmed KoreaMed CrossRef
  20. Suganthi C, Mageswari A, Karthikeyan S, Anbalagan M, Sivakumar A, Gothandam KM. 2013. Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. J. Genet. Eng. Biotechnol. 11: 47-52.
    CrossRef
  21. Aneja KR. 2003. Experiments in Microbiology, Plant Pathology and Biotechnology. New age international publication, pp. 245-275. New Delhi. Fourth edition.
  22. Holt JG. 1994. Bergey’s Manual of Determinative Bacteriology. 9th Ed. William & Wilkins, Baltimore,USA
  23. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.
  24. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  25. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
    Pubmed CrossRef
  26. Winkler UK, Stuckmann M. 1979. Glucogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by serratia marcescens. J. Bacteriol. 138: 663-670.
    Pubmed KoreaMed CrossRef
  27. Kilcawley KN, Wilkinson MG, Fox PF. 2002. Determination of key enzyme activities in commercial peptidase and lipase prepara tions from microbial or animal sources. Enzym. Microb. Technol. 31: 310-320.
    CrossRef
  28. Beg QK, Sahai V, Gupta R. 2003. Statistical media optimization and alkaline protease Production from Bacillus mojavensis in a bioreactor Process. Biochem. 39: 203.
    CrossRef
  29. Margesin R, Zimmerbauer A, Schinner F. 1999. Soil lipase activity—A useful indicator of oil biodegradation. Biotechnol. Tech. 13: 859-863.
    CrossRef
  30. Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A. 2006. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut. 170 : 3-15.
    CrossRef
  31. Venugopal M, Saramma AV. 2007. An alkaline protease from Bacillus circulans BM15, newly isolated from a mangrove station:characterization and application in laundry detergent formulations. Indian J. Microbiol. 47: 298-303.
    Pubmed KoreaMed CrossRef
  32. Hasan F, Shah AA, Hameed A. 2009. Methods for detection and characterization of lipases: A comprehensive review. Biotechnol. Adv. 27: 782-798.
    Pubmed CrossRef
  33. Salleh AB, Musani RM, Basri K, Ampon K, Yunus WMZ, Razak CNA. 1993. Extra- and intra-cellular lipases from a thermophilic Rhizopus oryzae and factors affecting their production. Can. J. Microbiol. 39: 978-981.
    CrossRef
  34. Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, et al. 2010. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 76: 2778-2782.
    Pubmed KoreaMed CrossRef
  35. Willerding AL, Oliveira LA, Moreira FW, Germano MG, Chagas Jr. AF. 2011. Lipase activity among bacteria isolated from Amazonian soils. Enzyme Res. 2011: 720194.
    Pubmed KoreaMed CrossRef
  36. Sonune N, Garode A. 2018. Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability. Biotechnol. Res. Innov. 2: 37-44.
    CrossRef
  37. Abada EAE. 2008. Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1. Pakistan J. Biol. Sci. 11: 1100-1106.
    Pubmed CrossRef
  38. Dong H, Gao S, Han S, Cao S. 1999. Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol. Appl. Biochem. 30: 251-256.
  39. Dalmau E, Montesinos JL, Lotti M, Casas C. 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Technol. 26: 657-663.
    CrossRef
  40. Chang RC, Chou SJ, Shaw JF. 1994. Multiple forms and functions of Candida rugosa lipase. Biotechnol. Appl. Biochem.19: 93-97.
  41. Ghanem EH, Al-Sayeed HA, Saleh KM. 2000. An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World. J. Microbiol. Biotechnol. 16: 459-464.
    CrossRef
  42. Nadeem M, Qazi JI, Baig S, Syed Q. 2006. Effect of medium composition on commercially important alkaline protease production by Bacillus licheniformis N-2. Food Technol. Biotechnol. 46: 388-394.
  43. Joo HS, Kumar CG, Park GC, Paik SR, Chang CS. 2003.Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J. Appl. Microbiol. 95: 267-272.
    Pubmed CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.