Article Search
닫기

Microbiology and Biotechnology Letters

보문(Article)

View PDF

Microbial Biotechnology

Microbiol. Biotechnol. Lett. 2020; 48(4): 506-514

https://doi.org/10.48022/mbl.2010.10008

Received: October 16, 2020; Accepted: November 5, 2020

대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산

Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum

Bu-Yeon Kim1, Hye-Bin Jung2, Ji-Yeong Lee 1, Lenny Ferrer 3, Henry Syukur Purwanto 1 and Jin-ho Lee 1*

1Major in Food Biotechnology, School of Food Biotechnology and Nutrition, Kyungsung University, Busan 48434 , Republic of Korea 2GeneChem Inc., Daejeon 34025, Republic of Korea 3Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany

Correspondence to :
Jin-Ho Lee,     jhlee83@ks.ac.kr

4-Hydroxybenzyl alcohol (4-HB alcohol) is one of the major active components of Gastrodia elata Blume, with beneficial effects on neurological disorders such as headache, convulsive behavior, and dizziness. Here, we developed a metabolically engineered Corynebacterium glutamicum strain able to produce 4-HB alcohol from 4-hydroxybenzoate (4-HBA). First, the strain APS963 was obtained from the APS809 strain via the insertion of aroK from Methanocaldococcus jannaschii into the NCgl2922-deleted locus. As carboxylic acid reductase from Nocardia iowensis catalyzes the reduction of 4HBA to 4-hydroxybenzaldehyde (4-HB aldehyde), we then introduced a codon-optimized car gene into the genome of APS963, generating the GAS177 strain. Then, we deleted creG coding for a putative short-chain dehydrogenase and inserted ubiCpr encoding a product-resistant chorismate-pyruvate lyase into the pcaHG-deleted locus. The resulting engineered GAS355 strain accumulated 2.3 g/l 4-HB alcohol with 0.32 g/l 4-HBA and 0.3 g/l 4-HB aldehyde as byproducts from 8% glucose after 48 h of culture.

Keywords: 4-hydroxybenzyl alcohol, Gastrodia elata, Corynebacterium glutamicum, metabolic engineering, carboxylic acid reductase

  1. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, et al. 2018. A review on central nervous system effects of gastrodin. Front. Pharmacol. 9: 24.
    Pubmed KoreaMed CrossRef
  2. Luo L, Kim SW, Lee HK, Kim ID, Lee H, Lee JK. 2017. Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 12:e0177322.
    Pubmed KoreaMed CrossRef
  3. Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y. 2016. De novo biosynthesis of gastrodin in Escherichia coli. Metab. Eng. 35: 138-147.
    Pubmed CrossRef
  4. Kim HJ, Hwang IK, Won MH. 2007. Vanillin, 4-hydroxybenzyl aldehyde and 4-hydroxybenzyl alcohol prevent hippocampal CA1 cell death following global ischemia. Brain Res. 1181: 130141.
    Pubmed CrossRef
  5. Yu SS, Zhao J, Lei SP, Lin XM, Wang LL, Zhao Y. 2011. 4-Hydroxybenzyl alcohol ameliorates cerebral injury in rats by antioxidant action. Neurochem. Res. 36: 339-346.
    Pubmed CrossRef
  6. Park S, Kim DS, Kang S. 2010. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur. J. Nutr. 50: 107-118.
    Pubmed CrossRef
  7. Kang CW, Han YE, Kim J, Oh YH, Lee EJ. 2017. 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci. Rep. 7: 14192.
    Pubmed KoreaMed CrossRef
  8. Song C, Fang S, Lv G, Mei X. 2013. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord. Neural Regen. Res. 8: 1383-1389.
  9. Podstolski A, Havkin-Frenkel D, Malinowski J, Blount JW, Kourteva G, Dixon RA. 2002. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Photochemistry 61: 611-620.
    CrossRef
  10. Lee JH, Wendisch VF. 2017a. Production of amino acids Genetic and metabolic engineering approaches. Bioresour. Technol. 245: 1575-1587.
    Pubmed CrossRef
  11. Kim JY, Kim BY, Moon KH, Lee JH. 2019. Metabolic engineering of Corynebacterium glutamicum for N-acetylglucosamine production. Microbiol. Biotechnol. Lett. 47: 78-86.
    CrossRef
  12. Lee JH, Wendisch VF. 2017b. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211-221.
    Pubmed CrossRef
  13. Wendisch VF, Lee JH. 2020. Metabolic Engineering in Corynebacterium glutamicum, pp. 287-322. In Inui M, Toyoda K (eds.), Corynebacterium glutamicum. Microbiology Monographs, Vol 23, Springer, Cham.
    CrossRef
  14. Purwanto HS, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, et al. 2018. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J. Biotechnol. 282: 92-100.
    Pubmed CrossRef
  15. Lee JH. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79.
    Pubmed CrossRef
  16. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73.
    CrossRef
  17. Eggeling L, Bott M. 2005. Handbook of Corynebacterium glutamicum, pp. 540-544. 1st Ed. CRC Press, Boca Raton, Florida.
    CrossRef
  18. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345.
    Pubmed CrossRef
  19. Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ. 2014. Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum. J. Biotechnol. 192: 355-365.
    Pubmed CrossRef
  20. Kim YM, Kwak MH, Kim HS, Lee JH. 2019. Production of indole3-acetate in Corynebacterium glutamicum by heterologous expression of the indole-3-pyruvate pathway genes. Microbiol. Biotechnol. Lett. 47: 242-249.
    CrossRef
  21. He A, Li T, Daniels L, Fotheringham I, Rosazza JP. 2004. Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl. Environ. Microbiol. 70: 1874-1881.
    Pubmed KoreaMed CrossRef
  22. Gahloth D, Aleku GA, Leys D. 2020. Carboxylic acid reductase:Structure and mechanism. J. Biotechnol. 307: 107-113.
    Pubmed CrossRef
  23. Han SS, Kyeong HH, Choi JM, Sohn YK, Lee JH, Kim HS. 2016. Engineering of the conformational dynamics of an enzyme for relieving the product inhibition. ACS Catal. 6: 8440-8445.
    CrossRef
  24. Rodriguez GM, Atsumi S. 2014. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng. 25: 227-237.
    Pubmed KoreaMed CrossRef

Starts of Metrics

Share this article on :

  • mail

Related articles in MBL

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.