Application of *Solanum lycopersicum* Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

Chan Mi Park, Heon Jeong, Sang Hoon Ma, Hyun Min Kim, Young Hee Joung, and Chul-Ho Yun*

School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea

Received: May 20, 2019 / Accepted: July 10, 2019

Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from *Leuconostoc mesenteroides* and *Saccharomyces cerevisiae* can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of *Solanum lycopersicum* (tomato) with 6xHis tag, expressed it in *Escherichia coli*, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Keywords: Cytochrome P450, tomato glucose-6-phosphate dehydrogenase, heterologous expression, NADPH-generating system

*Corresponding author
Tel: +82-62-530-2194, Fax: +82-62-530-2199
E-mail: chyun@jnu.ac.kr

© 2019, The Korean Society for Microbiology and Biotechnology
1.1.1.49) catalyzes oxidation of glucose-6-phosphate (G6P) to 6-phospho-δ-glucuronolacton simultaneously with reduction of nicotinamide adenine dinucleotide phosphate (NADP\(^+\)) to NADPH. G6PDH is a key enzyme of the rate-limiting step of oxidative pentose phosphate pathway (OPPP). The major function of OPPP is to provide NADPH for reductive biosynthesis and to supply pentose for nucleotide synthesis [11]. G6PDH is commonly used in NADPH-generating system (NGS) of P450-catalyzed reactions. However, only two G6PDHs from bacteria *Leuconostoc mesenteroides* (LMG) and yeast *Saccharomyces cerevisiae* (SCG) can be obtained commercially, while no plant G6PDHs are available at present.

In plants, G6PDH is generally classified to three isoforms depending on cellular localization, which are cytosolic (Cy-G6PDH), plastidic (P-G6PDH), and peroxisomal G6PDH [12–15]. G6PDHs were purified from barley *Hordeum vulgare* roots and potato *Solanum tuberosum* and their kinetic parameters were determined [16, 17]. Cy-G6PDH and P-G6PDH from barley were expressed in *Escherichia coli* and their enzymatic properties were studied [18, 19]. Cy-G6PDH and P-G6PDH from potato were expressed and purified as a GST-fusion protein in *E. coli* [13]. In addition, several pieces of evidence show that enzymatic activity and expression level of plant G6PDHs were increased by environmental stresses such as salt and drought in sugarcane [20], barley [21], soybean [22, 23], and tomato [24]. However, to our knowledge, there are no reports of enzymatic characterization of recombinant G6PDH from tomato (*Solanum lycopersicum*).

In this study, a cytosolic G6PDH gene of *S. lycopersicum* was cloned with 6xHis-tag and heterologously expressed in *E. coli*. We investigated the enzymatic properties of recombinant G6PDH after purification by affinity chromatography. We compared catalytic activity of His-G6PDH to two commercial G6PDHs, LMG, and SCG. Finally, we showed that His-G6PDH could successfully support P450-catalyzed reactions by generating NADPH.

Materials and Methods

Materials

G6P, NADP\(^+\), nicotinamide adenine dinucleotide (NAD\(^+\)), LMG, and SCG were obtained from Sigma-Aldrich (USA). Omeprazole and testosterone were purchased from Wako (Japan). All other chemicals were analytical grade.

RNA isolation and cDNA synthesis

Total RNA was isolated from tomato leaves (*S. lycopersicum*) using RNeasy Plant Mini Kit (QIAGEN, Germany), and cDNA was synthesized by reverse transcription using 1 μg of the total RNA and QuantiTect Reverse Transcription Kit (QIAGEN) following the manufacturer’s protocol.

Amplification of *S. lycopersicum* G6PDH gene

To amplify the *G6PDH* gene in the genome of *S. lycopersicum*, PCR was carried out using above cDNA, specific primers (forward: 5'-GATGCGGCGCATCTG-GTGTATTG-3', reverse: 5'-ACTTTAGTGTGGGAGG-GATCCAT-3'), and Platinum Taq DNA Polymerase High Fidelity (Invitrogen, USA) according to manufacturer’s protocol. PCR was initiated at 94°C for 2 min and run through 35 cycles of 94°C for 30 s, 55°C for 30 s, and 68°C for 90 s. After completing cycles, the reaction mixture was held at 68°C for 5 min and cooled at 4°C for 5 min. The PCR product was inserted into the pGEM-T easy vector by T4 DNA ligase (Promega, USA), and this ligate was introduced into *E. coli* DH5α cells via transformation. The G6PDH-pGEM-T easy plasmid was isolated from the transformed DH5α cells using HiGene Plasmid Mini Prep Kit (BIOFACT, Korea), and the plasmid sequence was analyzed via DNA sequencing (Cosmogenetech, Korea).

Cloning of *S. lycopersicum* G6PDH gene into expression vector

To introduce restriction sites, PCR was performed using the G6PDH-pGEM-T easy plasmid as a template, specific primers (NdeI forward: 5'-CATATGGCGGCATCATG-GTGTATTG-3' and XhoI reverse: 5'-CTCGAGTTATAGTGTGGAGGGATC-3'), and Platinum Taq DNA Polymerase High Fidelity (Invitrogen), according to manufacturer’s protocol. PCR condition followed the same procedure as shown above. After double-digestion of the PCR product and pET-28a expression vector (Merck KGaA, Germany) with NdeI-XhoI enzymes (NEB, USA), they were purified using LaboPass gel.
Generation of NADPH was monitored at 340 nm for 5 min with 10 s intervals. The specific activity (μmol product/min/μmol enzyme) was calculated by the molar attenuation coefficient of NADPH (6220 M⁻¹ cm⁻¹ at 340 nm) and initial velocity (v₀). To determine kinetic parameters (K_m and V_max for G6P and NAD⁺), specific activity of three G6PDHs was measured in 100 mM potassium phosphate buffer (pH 7.4) containing 0.22 mM NAD⁺ and range of 0 to 10 mM G6P or containing 3.3 mM G6P and range of 0 to 2 mM NAD⁺, respectively. Kinetic parameters were determined using nonlinear regression with Michaelis-Menten equation of GraphPad PRISM 5 (GraphPad Software, USA). To investigate optimal temperature of His-G6PDH, assays were performed at 26, 30, 35, 37, 40, 42, and 45°C. Effect of pH on His-G6PDH activity was analyzed at pH of 4, 5, 6, 7, 7.4, 8, and 9. Effect of buffer concentration was analyzed in 0, 1, 5, 10, 20, 50, 100, 200, and 500 mM potassium phosphate buffer (pH 7.4).

Expression and purification of CYP102A1 enzyme

A triple mutant (R47L/F87V/L188Q) of CYP102A1 was heterologously expressed in the E. coli DH5α F'-IQ and purified as previously described [25]. Transformed cells with the plasmid of CYP102A1 mutant-pCW were grown in 5 ml of LB broth containing ampicillin (100 μg/ml) and were grown at 37°C with shaking at 200 rpm until 0.8 of OD_600. Expression of CYP102A1 mutant was induced by adding 0.5 mM IPTG and 1 mM aminolevulinic acid (1 mM). The culture was grown at 30°C with shaking at 190 rpm for 24 h. The cells were harvested by centrifugation at 5000 g for 15 min. The cell pellet was resuspended in TES buffer (100 mM sodium phosphate, pH 8.0, 300 mM NaCl, and 20 mM imidazole). His-tagged protein was eluted by adding elution buffer (50 mM sodium phosphate, pH 8.0, 300 mM NaCl, and 250 mM imidazole). Elution profile and purity of His-G6PDH protein were confirmed by SDS-PAGE and staining with Coomassie Brilliant Blue R-250. The concentration of His-G6PDH was quantitated by extinction coefficient after dialysis with 100 mM potassium phosphate buffer (pH 7.4) containing 1 mM EDTA.

Activity assay of G6PDHs

Routine assays for measuring G6PDH activity were performed at 37°C in a VERSA max microplate reader (Molecular Devices, USA). The reaction was initiated by adding enzyme to 100 mM potassium phosphate buffer (pH 7.4) containing 3.3 mM G6P and 0.22 mM NAD⁺.

December 2019 | Vol. 47 | No. 4
Activity assay of CYP102A1 mutant toward omeprazole and testosterone

The CYP102A1 mutant (0.2 μM) was incubated with NGS in 100 mM potassium phosphate buffer (pH 7.4) at 37°C for 5 min. NGS consisted of 3.3 mM G6P and 0.22 mM NADP⁺ with 2 nM His-G6PD, 0.5 nM LMG, or 0.5 nM SCG. To investigate formation of 5'-OH omeprazole from omeprazole, the reactions were initiated by adding 200 μM omeprazole and were terminated with 600 μl of ice-cold dichloromethane after 10 min incubation at 37°C [27]. To investigate conversion of testosterone to 15β-OH testosterone, the reactions were initiated by the addition of 200 μM testosterone and were stopped with 25 μl of 1 N HCl containing 2 M NaCl and 500 μl of ice-cold ethyl acetate after 20 min incubation at 37°C [28]. After centrifuge samples at 3000 rpm for 10 min, organic layer was transferred to a new tube and evaporated under nitrogen gas. The products were analyzed by high performance liquid chromatography (HPLC) equipped with Gemini C18 column (150 × 4.6 mm, 5 μm; Phenomenex, USA). Mobile phase was acetonitrile/water (30:70, v/v) for omeprazole and methanol/water (60:40, v/v) for testosterone. Flow rate was 1 ml/min. The products of omeprazole and testosterone were detected at 302 nm and 240 nm, respectively.

Bioinformatics analysis

DNA and amino acid sequences of G6PDHs were found at the National Center for Biotechnology and Information [29] and UniProt Knowledgebase [30]. The UniProtKB entry names of G6PDHs used in this study are shown in Table S1. The amino acid sequences of G6PDHs were aligned by CLUSTALW [31]. Identities of amino acid sequences of G6PDHs were analyzed using Basic Local Alignment Search Tool [32]. The amino acid sequence of His-G6PDH was deduced from the DNA sequence of G6PDH-NX-pET-28 using the Translate Tool [33]. Molecular mass and extinction coefficient of His-G6PDH were predicted to be 60734.18 Da and 64665 M⁻¹ cm⁻¹ at 280 nm by ProtParam [34]. All sequence graphics were made using BioEdit program [35].

Statistical analysis

All experiments were performed three times. The values are presented as means with standard errors (SEs) of three independent experiments.

Fig. 1. Cloning of S. lycopersicum G6PDH gene and heterologous expression in E. coli. (A) Strategy for cloning of tomato G6PDH gene into expression vector pET-28a. (B) Purified His-G6PDH (1 μg) was loaded into 10% acrylamide gel with protein size markers that were indicated as M. After SDS-PAGE, the gel was stained with Coomassie Brilliant Blue R-250.
Results

Cloning of *S. lycopersicum* G6PDH gene

The DNA sequence of cytosolic G6PDH from *S. lycopersicum* (Gene ID: 101249507) was found at NCBI. Based on this sequence, specific primers were designed for cloning. The G6PDH gene was amplified by PCR using cDNA from *S. lycopersicum* as a template and cloned to expression vector pET-28a (Fig. 1A). DNA sequence of His-G6PDH is shown in Fig. S1.

Heterologous expression and purification of His-G6PDH

His-G6PDH has 531 amino acid residues including N-terminal 6xHis-tag (Fig. S2). Expression of His-G6PDH was induced by IPTG in *E. coli* and about 50% of expressed His-G6PDH existed as soluble form. His-G6PDH was purified by affinity chromatography (Fig. S3). The purified His-G6PDH was detected as a single protein band between 55 and 72 kDa in SDS-PAGE (Fig. 1B).

Comparison of activity among His-G6PDH, LMG, and SCG

To evaluate catalytic activity of the purified enzyme, His-G6PDH activity was compared with those of LMG and SCG. Activity of 5 nM His-G6PDH, LMG, and SCG was 1480, 11300, and 5300 μmol/min/μmol, respectively (Figs. 2A and B). In addition, we investigated whether His-G6PDH could generate comparable concentrations of NADPH produced by LMG and SCG. 21.1, 9.2, and 8.5 μM NADPH were produced by 0.5 nM LMG, 0.5 nM SCG, and 2 nM His-G6PDH for 5 min, respectively. For 20 min reaction, 59, 25, and 24.2 μM NADPH were generated by 0.5 nM LMG, 0.5 nM SCG, and 2 nM His-G6PDH, respectively (Fig. 2C). These results indicate that 4–10 fold of His-G6PDH than LMG or SCG is required to generate equal concentration of NADPH.

Kinetic characterization of His-G6PDH

Kinetic parameters (K_m and V_max) of purified His-G6PDH were determined at one fixed concentration of two substrates. The His-G6PDH showed typical Michaelis-Menten kinetics for G6P and NADP⁺ substrates in addition to LMG and SCG (Fig. S4). Kinetic parameters of His-G6PDH, LMG, and SCG are shown in Table 1. K_m values were similar among all enzymes tested here, while V_max values were distinct among enzymes. His-G6PDH showed much lower V_max value than those of LMG and SCG. The catalytic efficiency (V_max/K_m) of His-G6PDH for G6P was 2.26 min⁻¹ μM⁻¹, which was 6.9-fold and 4.4-fold lower than LMG and SCG, respectively. The
catalytic efficiency \((V_{\text{max}}/K_{m}) \) of His-G6PDH for NADP\(^+\) was 17.8 min\(^{-1}\) μM\(^{-1}\), which was 6.4-fold and 2.3-fold lower than LMG and SCG, respectively.

To investigate the coenzyme preference of His-G6PDH, we performed G6PDH activity assay with NAD\(^+\) instead of NADP\(^+\). His-G6PDH could not catalyze NADP\(^+\)-linked reactions (Fig. S5). This result indicates that G6PDH from \(\text{S. lycopersicum} \) is a NADP\(^+\)-specific enzyme.

Effect of temperature, pH, and buffer concentration on His-G6PDH activity

To define optimal conditions for His-G6PDH activity, G6PDH assay was performed at a different temperature, pH, and buffer concentration. His-G6PDH was active in a wide temperature range of 26 to 45°C. The optimal temperature was 37°C with 1610 μmol/min/μmol (Fig. 3A). When the effect of pH on His-G6PDH activity was investigated at a range of pH 4 to 9, His-G6PDH was active between pH 6 and 9. Although the maximal activity of His-G6PDH was shown at pH 9 with 2250 μmol/min/μmol, it showed an apparent activity with 1610 μmol/min/μmol at pH 7.4 (Fig. 3B). In addition, the best concentration of potassium phosphate (pH 7.4) was at 50–100 mM with 1414 μmol/min/μmol (Fig. 3C). These results imply that His-G6PDH has potential to support P450 reactions in a general P450 assay condition of 100 mM potassium phosphate buffer (pH 7.4) at 37°C.

Application of His-G6PDH to P450 activity assay

To investigate whether His-G6PDH can be applied to NGS for P450 assay, we performed P450 activity assay using CYP102A1 mutant and its well-known substrates, omeprazole and testosterone [27, 28]. Because 2 nM His-G6PDH generated similar concentration of NADPH with that generated by 0.5 nM SCG shown in Fig. 2C, we used 2 nM His-G6PDH, 0.5 nM LMG, and 0.5 nM SCG for providing NADPH to P450 reaction. Formation of 5'-OH omeprazole by three different NGS-supported P450 reactions was analyzed by HPLC. The 5'-OH omeprazole metabolite was eluted at 3.7 min (Fig. 4B). Formation rate of 5'-OH omeprazole by His-G6PDH-, LMG-, and SCG-supported P450 reaction was 30.0, 28.6, and 30.6 nmol/min/nmol, respectively (Fig. 4A). Three testosterone metabolites of CYP102A1 mutants have been reported as 15β-OH, 16β-OH, and 2β-OH testosterone [28]. The 15β-OH testosterone was a major metabolite by CYP102A1 mutant and it was eluted at 3.9 min (Fig. 4D). Formation rates of 15β-OH testosterone by His-G6PDH-, LMG-, and SCG-supported P450 reaction were 2.0, 1.9, and 2.2 nmol/min/nmol, respectively (Fig. 4C). These results suggest that His-G6PDH can be an alternative enzyme source for NGS.

Fig. 3. Optimal conditions for His-G6PDH activity. Effects of temperature (A), pH (B), and buffer concentration (C) on His-G6PDH activity were analyzed as described in the Material and methods.
According to safety testing of drug metabolites guidance for industry of Food and Drug Administration (FDA), identification and toxicity studies of drug metabolites are required to develop novel drugs [36]. Human P450s are involved in almost drug metabolism including steroids, xenobiotics, fatty acids, eicosanoids, and vitamins [37]. Thus, identification and production of drug metabolites by human P450s are important in drug industry. However, some challenges exist for applications of human P450s in related biotechnological fields, because they have low activity, stability, and solubility [38]. To overcome these challenges, soluble bacterial P450s have applied to study drug metabolites. In particular, a set of CYP102A1 mutants generated by random mutagenesis made it is possible to produce marketed drug metabolites in vitro [7].

In addition, high-cost nicotinamide cofactor (NADPH) supply is essential for P450-catalyzed reaction. To overcome dependency on NADPH of P450 reaction, several different approaches have been reported such as the whole-cell system [39, 40], enzyme-coupled cofactor regenerating [9, 10], peroxide shunt [41], and direct electron supply from electrodes [42]. Among them, G6PDH-coupled NADPH regenerating is widely used in P450 reactions. To our knowledge, only LMG and SCG can be purchased commercially and have used in NGS of P450 reactions.

In this study, we tried to develop G6PDH of *S. lycopersicum* as an alternative enzyme source of NGS. To understand *S. lycopersicum* G6PDH protein, the amino acid sequence of *S. lycopersicum* G6PDH was aligned with other G6PDHs belonging to the Solanaceae family, which are from *Solanum tuberosum* (potato) and *Capsicum annuum* (bell pepper) (Fig. S6). We found four conserved sequences in *S. lycopersicum* G6PDH: Rossman-fold motif (residues 36–42 of the *S. lycopersicum* enzyme; Fig. 4).

![Fig. 4. Effect of distinct G6PDH on NADPH-dependent P450 activity.](image)

After incubating CYP102A1 mutant with NGS containing His-G6PDH, LMG, or SCG, P450 activities toward omeprazole (A, B) and testosterone (C, D) were analyzed by HPLC. (B) Retention times for omeprazole and 5'-OH omeprazole were 8.4 min and 3.7 min, respectively. (D) Retention times for testosterone and 15β-OH testosterone were 11.7 min and 3.9 min, respectively.
GASGDLA), conserved motif (residues 180–184 of *S. lycopersicum* enzyme: EKPFG), putative active region (residues 208–216 of *S. lycopersicum* enzyme: RIDHYLGKE), and NADP^+^-binding site (residues 385–393 of *S. lycopersicum* enzyme: NEFVIRLQP) [18, 21, 43] (Fig. S6). Amino acid sequence identity of *S. lycopersicum* G6PDH to *S. tuberosum* and *C. annuum* G6PDH was 99% and 96%, respectively. This analysis suggests that amino acid sequences responsible for substrate binding and/or enzyme activity are well conserved in all organisms and G6PDH amino acid sequences of Solaneaceae family are highly conserved with more than 96% identity. When the amino acid sequence of *S. lycopersicum* G6PDH was compared to those of commercially available LMG and SCG, the identities were 31% and 52%, respectively (Fig. S7). The identity between LMG and SCG was 35%. Among four conserved regions of plant G6PDHs, the NADP^+^-binding site was not observed at bacterial LMG.

Kinetic properties of G6PDH from potato [17], LMG [44], and SCG [45] were investigated at 25°C. It was reported that even 26°C inhibited growth and development of tomato [46]. However, the optimal temperature of His-G6PDH in this study was at 37°C (Fig. 3A). The kinetic parameters of His-G6PDH also were determined at 37°C (Table 1 and Fig. S4) and it showed unusual trend in temperature.

Plant G6PDHs have been reported that they were active in a broad range of pH 7–10. For example, optimal pH of G6PDH from potato, barely, and Arabidopsis exhibited at pH 7.5–9, pH 7–10, and pH 8–8.5, respectively [15–17]. Similarly, His-G6PDH was active at pH 6–9 and the highest activity showed at pH 9 (Fig. 3B). In addition, the maximal activities of LMG and SCG were reported to be at pH 7.8 and pH 8.5, respectively [47, 48].

It is known that G6PDH has a different preference for coenzymes, NADP^+^ and NAD^+. G6PDHs from barley and Arabidopsis are specific for NADP^+^ but not NAD^+. SCG is a NADP^+^-preferring enzyme, while LMG catalyzes both NAD^+^- and NADP^+^-linked reactions [44, 45]. Here, His-G6PDH was found to be a NADP^+^-specific enzyme (Fig. S5). This result indicates that His-G6PDH could support P450 reactions by only generating NADPH.

Coexpression of *G6PDH* and *CYP* genes increased the efficiency of P450-mediated bioconversion in yeast system [49]. In plants, transient expression of *CYP* genes are useful for the production of valuable compounds [50, 51]. These reports suggest that heterologous expression of plant *G6PDHs* can be essential for P450-mediated bioconversion in plant system.

In conclusion, we first report the application of plant G6PDH to P450-catalyzed reaction. We investigated the enzymatic properties of His-G6PDH and optimized NGS with His-G6PDH for P450 assay. Although specific activity of His-G6PDH was lower than those of commercial enzymes, His-G6PDH could sufficiently support NGS for P450-catalyzed bioconversion as well as other NADPH-needed reactions in laboratory research and related industries.

Acknowledgments

This study was supported by the grants from the National Research Foundation of Korea (NRF-2018M3A9F3079566), Republic of Korea and the Next-Generation BioGreen 21 program (SSAC, grant no: PJ013331012019), Rural Development Administration.

Conflict of Interest

The authors have no financial conflicts of interest to declare.
References

http://dx.doi.org/10.4014/mbl.1905.05008